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By combining molecular dynamics simulation with reaction pathway sampling, we have observed
the nucleation of a three-dimensional dislocation loop from a sharp corner in silicon and
investigated the shear stress dependence of the activation energy and saddle-point configuration.
The nucleated shuffle-set half-loop consisted of two 60° segments and one screw segment, each
lying along a Peierls valley. The half-hexagonal shape is in good agreement with experiments at low
temperature. Under high stress �90%–95% of athermal shear stress�, the dislocation embryo is far
from perfect, with half-size Burgers vector �about 0.2 nm� and a 0.4–0.7 nm radius forming a diffuse
core region. A consequence is that the Rice–Thompson theory gives incorrect predictions regarding
the activation energy and saddle-point configuration. With decreasing applied stress �less than 70%�,
the embryo approaches that of a perfect dislocation. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2963487�

I. INTRODUCTION

The stress-induced dislocation loop in silicon devices
leads to charge leakage and electrical shorting between
devices.1,2 Because it can seriously degrade the performance
of devices, many researchers have been working on the prob-
lem from experimental3,4 and theoretical approaches5–7 for
the past 30 years. Recently, Schwarz et al. analyzed the dis-
location dynamics in actual devices using his original code8

and succeeded in reproducing its configurations.9,10 How-
ever, since the event of dislocation nucleation, which occurs
at an atomic level, is beyond the scale of dislocation theory,
they needed to put an initial dislocation loop with 1–5 nm
radii at a stress concentration point to mimic the nucleation
process. Schwarz also tried to find the critical loop size under
various stress fields and concluded that atomistic modeling is
required to treat this problem in a serious manner.11

Even though there have been many contributions to dis-
location mobility in silicon from an atomistic landscape,12,13

little is known about the dislocation nucleation. Godet et al.
have performed simulations of dislocation nucleation from a
surface step in silicon using empirical potential14 and first-
principles calculation.15 They observed the nucleation of a
shuffle-set dislocation loop and obtained the critical condi-
tions. However, since they employed a thin two-dimensional-
like model, a straight dislocation was emitted from a surface
step. Therefore, they did not discuss the activation barrier
and saddle-point configuration of the dislocation embryo.

Generally, dislocation nucleation can occur when the
system overcomes an activation energy barrier via thermal
fluctuation. Therefore, such a perspective is indispensable to
discuss the nucleation process at finite temperature. Recently,
Zhu et al.16,17 have conducted an atomistic simulation of the
saddle-point configuration and activation energy for the

nucleation of a three-dimensional �3D� dislocation loop from
a stressed crack tip in single crystal Cu. They employed a 3D
model that can deal with the dislocation loop nucleation and
succeeded in obtaining an activation energy and critical loop
configuration by using the nudged elastic-band �NEB�
method.

We applied their framework to the dislocation nucleation
in covalent-bond silicon. Our employed system is a sharp
corner, which is well known as one of the popular dislocation
sources in semiconductor devices.1–11 Our final goal is to
provide a dislocation dynamics simulation with a critical
condition for dislocation nucleation. Such a smooth connec-
tion would allow for more accurate prediction of the dislo-
cation behaviors in semiconductor silicon. It should be noted
that we focus on the ductile fracture �dislocation nucleation�
of silicon, while Zhu et al.18 focused on brittle fracture
�crack extension�.

II. MOLECULAR DYNAMICS SYSTEM

As a first step, molecular dynamics �MD� simulations
were conducted to observe the critical athermal strain ��ath�.
The simulation model is shown in Fig. 1. A rectangular hole
whose x and z sizes were 1/4 of the cell size was created in
the model so as to make a sharp corner. Periodic boundary
conditions were imposed in all directions. The system size
was 23.0�11.5�22.8 nm3 and included 289 800 atoms.
Constant low-temperature �1 K� simulations were carried out
in order to reduce the thermal fluctuation The Stillinger–
Weber �SW� potential19 was employed, along with the Verlet
method with a 1 fs time step. In order to avoid phase-
transformation problems,20 pure shear stress was applied to a

�111��011̄� slip system. Namely, the shape of the MD cell
was changed so that the resolved shear stress of the �111�a�Electronic mail: izumi@fml.t.u-tokyo.ac.jp.
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��011̄� slip system was maximized. As a result, a dislocation
loop is subject to the shear stress shown as the arrow in Fig.
1.

When the applied resolved shear strain reached 5.1%
�averaged resolved shear stress was 3.5 GPa�, a shuffle-set
dislocation loop involving two 60° segments and one screw
segment was nucleated from a sharp corner. No phase tran-
sition to the amorphous phase or twin phase was present. In
Fig. 2, snapshots are shown by using the slip-vector
representation,21 which is a measure of how far an atom has
moved relative to its nearest-neighbor and is similar in defi-
nition to the Burgers vector. The red atoms show the com-
plete slipped area, and the blue atoms show the small-slipped
area. The outline of the colored region indicates the disloca-
tion core region or surface region. In an initial stage, the
dislocation embryo is nucleated. It then grows and becomes
a perfect dislocation loop whose maximum slip vector
reaches that of the Burgers vector. Unlike the nucleated dis-
location loop in Cu,16 the dislocation elongates along differ-
ent Peierls valleys and shows a half-hexagonal shape. His-
torically, it is well known that the dislocation loop in silicon
has a hexagonal shape whose edges are parallel to the �110�

Peierls valley on the �111� slip plane.22,23 In recent low-
temperature experiments, such hexagonal loops were also
observed.24 It can be said that our simulation is in good
agreement with the experimental results.

At high temperature, it is widely accepted that glide-set
dislocation can move more easily than shuffle-set dislocation
based on experimental25,26 and theoretical approaches.27,28

However, it is also known that shuffle-set perfect dislocation
has a lower unstable stacking fault energy ��us�, which is
considered to be closely related to dislocation nucleation29

than glide-set partial dislocation. This result was confirmed
by the system employing the SW potential �shuffle set,
0.83 J /m2; glide set, 3.08 J /m2�30 and that employing the
density functional theory �DFT� scheme �shuffle set,
1.67 J /m2; glide set, 1.91 J /m2�.31 A series of recent
experiments32–34 suggests that shuffle-set dislocations are
nucleated at low temperature �as low as 77 K�. We believe
that shuffle-set dislocation could be nucleated under high
stress in the semiconductor devices. However, such so-called
shuffle-glide controversy has not yet been resolved and is
still going on.

It is noted that the shear stress in this system is not
homogeneous but is inhomogeneous around the sharp corner.
In the vicinity of the sharp corner, the shear stress distribu-
tion becomes�=Kr−0.2. Here, r is the distance from the cor-
ner and K is a prefactor. This stress distribution was con-
firmed by the finite element method simulation employing
the same geometrical system.35 The maximum atomistic
shear stress reaches approximately 6–7 GPa at a point lo-
cated 1 nm apart from the corner.

III. REACTION PATHWAY

In order to obtain activation barriers and saddle-point
configurations under various stress levels, we apply the NEB
method.36–38 We have incorporated various techniques such
as the improved tangent method,36 climbing method,37 and
free-end method.38 Since the setup of initial images greatly
affects the convergence of NEB calculation, we carefully
pick up 20 atomic configurations from snapshots of MD as
initial NEB images. The calculation is considered to be con-
verged when the potential force on each replica vertical to
the path becomes less than 0.005 eV /Å. Our approach is
similar to that of Zhu16 and Boyer.39

Dependence of the activation energy on the shear strain
normalized by the athermal strain is shown in Fig. 3 �left�.
The curve can be fitted by �E=A�1−� /�ath�n. Here, A
=111.5 eV, n=1.87, and �ath=0.051 are obtained. The expo-
nent n is similar to the case of homogeneous nucleation �A
=13.7 and n=1.82�,39 nucleation from vacancy �A=14.3 and
n=1.94�,39 and nucleation from a sharp corner �A=7.4 and
n=1.75�40 in copper �Mishin potential41� A prefactor A is
approximately 6–15 times larger than that of copper. The
prefactor would reflect a higher Peierls barrier of covalent-
bonding crystal. The unstable stacking fault energies ��us� of
silicon and copper obtained by using respective interatomic
potentials �SW potential and Mishin potential� are
0.83 J m−2 and 0.16 J m−2, respectively. There might be any
relationship between �E and �us.

FIG. 1. Simulation model for MD. Resolved shear stress is applied to a

�111��011̄� slip system.

FIG. 2. �Color online� Snapshots of a dislocation nucleation from a sharp
corner in silicon.
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It should be noted that our comparison study is very
limited. For general discussion about physical meaning of A
and n, the dependences of A and n on the stress field and
material need to be investigated further.

The activation volume defined by the first-order differ-
ential of the activation energy with respect to shear stress is
also shown in Fig. 3 �right�. The activation volume is also
larger than that in copper.

It should be noted that Pizzagalli et al.42 showed that the
core properties of screw dislocation in silicon depend on the
MD potential used. In order to obtain quantitative result, our
results should be also verified by more-sophisticated method
such as DFT and tight-binding MD.

In Fig. 4, the saddle-point configurations of a dislocation

embryo whose color shows the absolute value of slip vector
�bottom� and the dependence of the maximum inelastic dis-
placement of the dislocation embryo on shear strain �top� are
shown. In the case of � /�ath=0.90–0.95, the inelastic dis-
placement of the dislocation embryo, which is defined by the
length of the slip vector, is approximately 60%–70% of the
length of the Burgers vector. Its direction almost coincides
with that of the original perfect dislocation. The radius is
0.4–0.7 nm. Since the dislocation loop is so small, almost the
entire loop region is regarded as a diffuse core region. That
dislocation loop would be beyond the scale of the dislocation
theory. Therefore, direct transfer of the dislocation configu-
ration to the dislocation dynamics might be meaningless and
impossible. However, our scheme could provide a disloca-
tion dynamics simulation with a criterion concerning dislo-
cation nucleation.

As the applied stress decreases �� /�ath=0.70�, the maxi-
mum inelastic displacement approaches that of the Burgers
vector and the dislocation embryo approaches that of perfect
dislocation. In this scale, the dislocation theory would be
effective. However, the activation energy ��10 eV� be-
comes so high that the system cannot overcome it.

Finally, in order to make clarify the size effect, we con-
ducted the same simulation with a smaller model whose cell
sizes are 1/3 those of the original one. This model proved
that an activation energy above � /�ath=0.85 �saddle-point
loop radius is approximately 15 nm� is not affected by the
cell-size effect. It indicated that if the loop radius exceeds 45
nm in the larger model, the result would be subject to a
cell-size effect. However, all the resulting radii are below 25
nm. Therefore, we believe that the size effect should not
affect the accuracy of the activation energy and the saddle-
point configuration reported here.

IV. COMPARISON WITH THE RICE–THOMPSON
THEORY

Classical Rice–Thompson �RT� theory43 has been used
as a simple way to estimate the critical condition for dislo-
cation nucleation.44 Here, we investigate the difference be-
tween our atomistic approach and the classical approach. As
we indicated, the shear stress in the vicinity of a sharp corner
shows�=Kr−0.2. Using this distribution, the critical condition
for dislocation nucleation can be estimated as Kcrit=0.050
GPa m0.2 for the RT model and 0.106 for our model. It

FIG. 3. Dependence of activation en-
ergy �left� and activation volume
�right� on shear strain for the disloca-
tion nucleation from a sharp corner in
silicon.

FIG. 4. �Color online� �Top� Maximum inelastic displacement of the saddle-
point configuration. �Bottom� Various saddle-point configurations of the
loop nucleation from a sharp corner �dislocation embryo�.
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should be noted that the RT model underestimates the ather-
mal strain �stress� by half. The dependence of the activation
energy on shear strain is shown in Fig. 5. It is found that the
RT model overestimates the activation energy by a factor of
approximately 2. Rice29 has also proposed a more-
sophisticated concept for the dislocation nucleation. It is
worth comparing this concept to our new scheme.

V. CONCLUSION

In conclusion, the combination of the MD simulation
with reaction pathway sampling enables us to evaluate the
critical condition of the dislocation nucleation process. The
dislocation theory is inaccessible to such a nucleation pro-
cess due to its size limitation, and only an atomistic approach
can solve that problem. We believe our scheme provides in-
sight into the dislocation nucleation phenomena in semicon-
ductor devices.
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