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Abstract

For nano-scale thin film, effects of
surface and interface, which can be ig-
nored on a macro scale, become impor-
tant. For example, surface energy and
stress are key parameters for predicting
the intrinsic stress of thin films. Sev-
eral researchers have reported that the
elastic constants of thin films are dif-
ferent from those of bulks. We have
recently proposed new definitions and
calculation methods regarding surface
stress and elastic constants for thin films
by extending Martin’s method, which
is useful for obtaining the internal dis-
placement and elastic constants within
the framework of the molecular dynam-
ics method. We applied our method
to nano-scale thin films of crystal and
amorphous silicon. The effects of sur-
face reconstructions and the width of the
surface are also investigated.
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1 Introduction

The films used in the manufacture
of semiconductors are less than 10 nm
thick. At this thickness, the effects of
surface and interface, which can be ig-
nored on a macro scale, become impor-
tant. For example, surface (interface)
energy and stress are key parameters
for predicting the intrinsic stress of thin
films, though the stress depends also on
the microstructures and growth mode at
atomic level[1][2]. However, it is difficult
to obtain values of surface energy and
surface stress experimentally. Therefore,
numerical evaluation by molecular sim-
ulation has been attempted. In addi-
tion, several researchers have reported
that the elastic properties (e.g. Young
module) of thin films are different from
those of bulks[3][4]. In particular, the
elastic properties of films with thickness
in the range of several nm may exceed
the range of continuum approximation.
Therefore, it has become very important
to investigate the limit of continuum ap-
proximation and to predict unique phe-



nomena in that thickness range. In cal-
culating the elastic properties of inho-
mogeneous surface structures, the effect
of internal displacement, which is non-
linear atomic displacement in response
to deformation, must be taken into ac-
count. We have recently proposed new
definitions and calculation methods re-
garding surface stress and surface elas-
tic constants for thin films with free sur-
faces through an extension of Martin’s
method[5][6]. This method is useful for
obtaining the internal displacement and
elastic constants within the framework
of the molecular dynamics. We applied
our method to nano-scale thin films of
crystal and amorphous silicon. In order
to investigate the depth of the surface
effect, the local atomic elastic constants
are newly defined. Those effects on the
elastic properties of whole thin films are
also discussed.

2 The definitions and calculation

methods of surface energy, sur-

face stress and surface elastic

constants

Definition of surface

In order to define the surface of a
molecular dynamics system, we pre-
pared a thin film model with a free
boundary condition for the z-direction
and two periodic boundary conditions
for the x- and y-directions as shown in
Fig. 1. Therefore, the evaluation area
is made up of two surfaces that face
each other. The film must be enough
thick to prevent interference of these two
surfaces. It should be noted that the
surface reconstructions greatly influence
the surface properties.

Definition of strain

Since the z-direction is not subject
to a periodic boundary condition, the
shape matrix of a MD cell must be writ-
ten in Eq. (1). Therefore in-plain de-
formation gradient tensor is defined by
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Figure:1 Surface model
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, where the subscript 0 means

the state before deformation. In-plane
Green-Lagrange strain η̂ can be written
in Eq. (2).
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The definitions are represented for-
mally by three-dimensional notations,
i.e. Eq. (3).
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Definition of internal displace-

ment vector

Although in the elastic theory the dis-
placements of material points become
linear to a deformation, this is not the
case with atomic displacements. In
an atomic system, each atom moves to
its most stable point in response to a
deformation. This difference, between
the displacement of continuum body ap-
proximation and that of the atoms, is
called internal displacement.

Distance vector rαβ between atoms α
and β after a deformation can be writ-
ten by the sum of the homogeneous de-



formation term (the first term on the
right-hand side of Eq. (4)) and the
relative displacement term (the second
term), where the subscript 0 symbolizes
the state before deformation.

� αβ = ˆ� � αβ
0 + � β

− � α. (4)

Now internal displacement vector is

newly defined by ξ̂
α

= F̂
t
uα as a rota-

tional invariant variable. By using this
definition, rotational invariant distance
sαβ = (rαβ)trαβ can be represented as
follows:
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From Eq. (5), the variation in the in-
teratomic distance in response to the de-
formation F̂ (averaged strain η̂) can be
derived.

It should be noted that displacements
in the z-direction are included in the in-
ternal displacement vector ξ̂

α
.

Definition of surface energy

Surface energy γ is the energy varia-
tion per unit area due to the surface cre-
ation. It is defined by Eq. (6). Esurf

and Ebulk are the energy of the system
with and without the surface, respec-
tively. The latter value must be esti-
mated separately by a bulk model. A is
the surface area of two free surfaces.

The strain is defined so that the cell
size in the zero-strain state is equal to
that of the zero-stress state of a bulk;
that is, the strain corresponding to the
lattice parameter at a bulk stress of zero
is defined as zero.

γ(ˆ� ) =
1

A(ˆ� )

(

Esurf (ˆ� ) − Ebulk(ˆ� )
)

=
Eγ(ˆ� )

A(ˆ� )
(6)

Definition of surface stress

Surface stress is the variation in total
surface energy (Eγ) per unit area with
respect to the strain η̂ij . This variation
corresponds to the stress generated by
creation of the surface.
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η̂′ means that all components except
for the differentiating component are set
to zero. Unlike thin-film stress, sur-
face stress does not depend on thickness,
since the surface effect is not divided by
volume but by surface area as in Eq.
(7). Therefore, it can be said that sur-
face stress is an intrinsic property of the
surface.

If γ(ε) is not dependent on the strain,
which is the case with liquid,

fij(ˆ
� ) =

1
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· A0δijγ(ˆ� ) = γ(ˆ� )δij . (8)

If γ(ε) is dependent on the strain,
which is the case with solid,
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� ) = γ(ˆ� )δij +
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. (9)

The second term is the characteristic
term for a solid only.

When we apply this definition to
molecular dynamics, Eq. (10) is ob-
tained by using Eγ.
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Since the stress does not depend on
the internal displacement[5], total differ-
entiations can be replaced by partial dif-
ferentiations.

f bulk
ij (η̂) must be estimated separately

by the bulk model. In general, the stress
tensor of the bulk model is defined by
using the shape matrix shown below.

�
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)

(11)

A different strain tensor η and a differ-
ent internal displacement vector ξα are
defined by using h. However, since the
stress is not dependent on the internal
displacement, the definition by using η

and that by using η̂ become equivalent
to each other in the case of i, j = 1, 2.
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Therefore, the stress tensor can be de-
fined by Eq. (13), where we assume that
the volume is V0 = A0Lz/2 and m indi-
cates bulk or surf .
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Definition of surface elastic con-

stants

Surface elastic constants are defined
as second-order derivatives of surface en-
ergy with respect to the strain η̂ij , which
represents the variation in elastic prop-
erties due to surface creation.
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(d0

ijkl)
surf and (d∗

ijkl)
surf are referred

to as local and relaxation term, respec-

tively. Dα
ijk and Eαβ

ij correspond to
the piezoelastic constants and the force
constants between atoms, respectively.
Since the elastic constants depend on
the internal displacement, and since dif-
ferent definitions of strain and inter-
nal displacement are used between the
bulk and surface models, dbulk

ijkl /Lz is not
equal to the usual elastic constants, un-
like the case with stress.
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dbulk
ijkl corresponds to the elastic con-

stants under the two-dimensional plane-
stress condition (σz = γxz = γyz ≡ 0).



For example, dbulk
ijkl can be written by Eq.

(22)-(25) in the orthotropic elastic body,
where the Voigt notation is used.
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(24)

dbulk
44

= LzC44 (25)

From the definition of Eq. (14), it is
shown that the surface elastic constants
are coefficients between surface stress
fij and strain η̂kl as shown in Eq.(26).
fij(0) is the surface stress at the zero
strain state, which originates in the fact
that the strain is defined on the basis of
the state of the bulk.

dijkl(η̂)η̂kl = fij(η̂) − fij(0) (26)

3 Results

Analysis condition

We applied our method to nano-scale
thin films of crystal and amorphous sili-
con. Two kinds of crystal surfaces, i.e.,
(100)1×1 and (100)2×1, and two kinds
of amorphous surfaces, i.e., relaxed and
well-annealed, are prepared. The Tersoff
potential is used to model the silicon[7].

For the amorphous model, we
prepared a bulk model including
1000 atoms and with overall size of
2.7×2.7×2.7 nm. First the structures
of the bulk amorphous silicon were pro-
duced by a melt-quench method. Then
the structures are annealed at 1600K
for 10 ns. The surfaces are formed
by removing the periodic boundary
condition of the z-direction. After the
surfaces are created, the systems are
relaxed by the conjugated gradient

method (relaxed surface) or by thermal
annealing for 4ns at 1200K and 2ns
at 800K (well-annealed surface). This
recipe is determined so that the state of
the bulk does not change by annealing.
Three samples are produced.

Surface energy, surface stress

and surface elastic constants

The surface energy γ, surface stress f
(in-plane f11 and f22 ) and surface elas-
tic constants dIJ are shown in Tables 1
and 2.

Table:1 Surface energy γ (J/m2) and
surface stress f (N/m) of the surface of
crystal silicon and amorphous silicon,

whose evaluation area is 14.6 nm2. The
x-direction of the (2×1) surface model

corresponds to the dimer-bonding
direction.

γ f11, f22

(100) 1×1 2.27 -0.88
(100) 2×1 1.48 0.40, -1.34

a-Si(relaxed) 1.62±0.06 -0.50±0.19
a-Si(well-ann.) 1.07±0.06 1.38±0.19

The surface energy of crystal decreases
from 2.27 J/m2 to 1.48 due to the (2×1)
reconstruction. The compressive in-
plane surface stress also decreases, from
-0.88 to -0.50 N/m. The well-annealed
amorphous surface has the lowest sur-
face energy, 1.07 J/m2, and a large ten-
sile surface stress, 1.38 N/m. These
variations are caused by a large recon-
struction of the amorphous surface. The
coordination number and ring statistics
are shown in Tables. 3 and 4, respec-
tively. From the comparison of the re-
laxed amorphous surface with the well-
annealed one, we can see that annealing
resulted in the disappearance of the 2-
coordination number and the increase of
the 4-coordination number. Increases in
the number of six- and seven-membered
rings are also observed. It is thought
that the strong structures of the bond
network are constructed by the surface



Table:2 Surface elastic constants dIJ (N/m) of the surface of crystal silicon and
amorphous silicon

d11, d22 d12 d44

(100) 1×1 -8.1 0.28 -3.6
(100) 2×1 -17.8, -0.7 -0.55 -0.40

a-Si(relaxed) -11.2 ± 2.3 -5.7 ± 1.8 -2.4 ± 0.5
a-Si(well-annealed) -7.1± 4.2 -4.9 ± 0.4 -1.2 ± 2.7

reconstruction, and that those effects in-
fluence the surface properties greatly.

While the coordination number of a
well-annealed amorphous surface is al-
most the same as that of the crystal sil-
icon surface (100)(2×1), the ring statis-
tics show a different tendency, i.e. the
amorphous surface has a larger num-
ber of five- and seven-membered rings.
This reflects the difference in the bond
network between amorphous and crystal
surfaces.

The negative surface elastic constants
also decreased due to the surface recon-
struction. This indicates that the elastic
properties of thin films approach those of
bulks.

4 Discussion

Distribution of atomic elastic

constants

In order to investigate the depth of
the surface effect, the local atomic elas-
tic constants, (d0α

ijkl)
surf , are newly de-

fined by Eq. (27), which expresses qual-
itatively the contribution of the local ef-
fect to the whole system. Therefore, its
definition is intrinsically different from
(d0

ijkl)
surf .

d0α
ijkl = (d0α

ijkl)
surf − (d0α

ijkl)
bulk

=
A0

Aα
0

∑

β

∂f surf
ij

∂rαβ

∂rαβ

∂ηij

− (d0α
ijkl)

bulk,

(

1

N

∑

α

d0α
ijkl = d0

ijkl

)

(27)

N and Aα
0

are the number of atoms
and the surface area per atom, respec-
tively.

The distributions of d0α
11 and d0α

44 along
the direction of thickness are shown in
Fig. 2 and 3 for (100) 2×1 and relaxed
a-Si surfaces. Both ends of the x-axis
correspond to the surface area.

In contrast to the continuum approx-
imation, the elastic constants of an
atomic system show not a homogeneous
distribution but an inhomogeneous one.
The scattering region of atomic elastic
constants reaches about four atomic lay-
ers. Therefore, negative (soft) surface
elastic constants are generated mainly
within three or four atomic layers from
the surface, which corresponds to a
width of 0.2-0.5 [nm].
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Table:3 Ratio of the coordination number within 5.5nm from the surface. The standard
deviation of amorphous results is in the range of 0 to 2 %

N2 N3 N4 N5 Nave

(100) 1×1 22.2 0 77.8 0 3.56
(100) 2×1 0 22.2 77.8 0 3.78

Crystal(Bulk) 0 0 100 0 4

a-Si(relaxed) 8.8 20.7 65.9 3.8 3.63
a-Si(well-annealed) 0.0 22.6 74.8 2.5 3.79

a-Si(Bulk) 0 0.1 96.2 3.7 4.03

Table:4 Ring statistics within 5.5nm from surface
R3 R4 R5 R6 R7

(100) 1×1 0 0 0 1.33 0
(100) 2×1 0 0 0.22 1.44 0.22

Crystal(Bulk) 0 0 0 2 0

a-Si(relaxed) 0.00 0.03 0.32 0.69 0.66
a-Si(annealed) 0.00 0.03 0.40 0.81 0.80

a-Si(Bulk) 0.00 0.03 0.40 1.03 1.03
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Figure:3 Distribution of atomic local

elastic constants along the z-direction.

Relaxed amorphous surface model

on the thickness have been investigated.
The results of (100)1×1 and (100)2×1
surfaces are shown in Fig. 4 for d11.

The values of elastic constants d11 are
not dependent on the film thickness. Be-
low 1nm thickness, a small variation of
d11 appears. These are caused by the in-
terference of surfaces, since the surface
effect reaches about 0.5nm as shown in
Fig. 2.
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Deviation from the continuum

approximation

Since the surface elastic constants in-
clude only the surface effect and do not
depend on the film thickness, the elastic
constants of the whole thin film grad-
ually approach those of bulks as the
thickness increases. Therefore, the in-
plane strain of a thin film caused by
the same surface stress decreases as the
thickness decreases, due to the softening
effect of the surface elastic constants. In
the isotropic case, in-plane strain η̂film

caused by surface stress at the zero-



strain state is written by Eq. (28) from

f surf
ij = 0.

η̂film =
f11

dsurf
11

+ dsurf
12

(28)

On the other hand, if the film is ap-
proximated by a continuum body, in-
plane strain η̂bulk can be written by re-
placing dsurf into dbulk in Eq. (28).
Therefore, Eq. (28) can be written in

simple form by using dsurf
ij = dbulk

ij + dij

and Eq. (22)-(25).

η̂film =
f

d11 + d12 + Lz
(C11+2C12)(C11−C12)

C11

(29)

The deviation of η̂film from η̂bulk can
be written by film thickness Lz and
softening parameter C∗ which we have
newly defined.

dev =
η̂film − η̂bulk

η̂bulk
= −

1

1 + LzC∗
,

C∗ =
(C11 + 2C12)(C11 − C12)

C11(d11 + d12)
. (30)

As the thickness increases, the devi-
ation approaches zero. The curve of a
well-annealed surface of amorphous sil-
icon is shown in Fig. 5 as a function
of thickness Lz. The deviation from the
continuum approximation becomes less
than 5% when the thickness exceeds ap-
proximately 5nm. These results lead us
to conclude that continuum approxima-
tion can be established in such a thin
film.

5 Conclusions

We have proposed new definitions and
calculation methods regarding surface
stress and elastic constants for thin films
by extending Martin’s method, which
is useful for obtaining the internal dis-
placement and elastic constants within
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the framework of the molecular dynam-
ics method. We applied our method
to nano-scale thin films of crystal and
amorphous silicon. The effects of sur-
face reconstructions were also investi-
gated. The well-annealed surface has re-
markably different properties compared
with the relaxed surface. The width of
the surface is also discussed in terms of
newly defined atomic-level elastic prop-
erties. It is found that the width of the
surface is approximately 0.5nm.

References

[1] R. Koch, J. Phys. Condens. Mater., 6

(1994), 9519-9550.
[2] S. Hara, S. Izumi, S. Sakai, Proceed-

ings of the 2002 International Confer-
ence on Computational Engineering &
Sciences, 131 (2002)

[3] K. E. Petersen, C. R. Guarnieri, J.
Appl. Phys. 50 (1979), 6761

[4] S. Matsuoka, K. Miyahara, N. Na-
gashima, K. Tanaka, Trans. Jpn. Soc.
Mech. Eng., (in Japanese), 62 (1996),
134

[5] J. W. Martin, J. Phys. C, 8 (1975),
2858

[6] S. Izumi, S. Sakai, JSME International
Ser. A, submitted

[7] J. Tersoff, Phys. Rev. B, 38 (1988),
9902


