

shaping tomorrow with you

SCIGRESS ME 2.3 のLAMMPS連携機能のご紹介/体験実習

「SCIGRESS ME+LAMMPSを使ってみよう!」

2016年3月7日 富士通株式会社

SCIGRESS ME 2.3 の LAMMPS 連携機能 ご紹介

LAMMPSを使用する際の課題

◆ モデリング機能が不足しているため、複雑な構造作成が難しい。 ※コマンドでの構造生成、座標データの読み込みは可能。

◆ ポテンシャル設定が煩雑である。

分子系では、結合・結合角・二面角・面外角を全て種類ごとに設定する必要がある。大きな分子では膨大な数の設定になる。

SCIGRESS ME 2.3 のLAMMPS連携機能

SCIGRESS ME は、入力データ作成から結果解析まで行える分子動力学ソフトウェアです。 LAMMPS I/Fにより、LAMMPSと連携してMD計算を実行できます。

※LAMMPSのMD計算機能のみが対象となります。粗視化MD、DPD、Peridynamicsなどは対象外です。

SCIGRESS ME 2.3 LAMMPS I/Fの主な機能

入力データ作成	モデリング、計算条件設定、ポテンシャル設定、リスタートデータ生成
計算実行	逐次実行、バッチ計算
結果表示	アニメーション、軌跡、温度・圧力・体積等の時間変化グラフなど
二次解析	平均二乗変位、二体相関関数・積算配位数など

SCIGRESS ME 2.3 の動作環境

OS	Windows Vista, 7
CPU	Pentium 4 以上
メモリ	2GB以上(推奨)

モデリング

様々なモデルを作成するためのウィザードやツールが搭載されています。

主なモデリング関連機能

MDセル作成	ウィザード(ランダム、テンプレート(結晶)、高分子、液晶)、 セルの貼り合わせ・積み重ねなど
編集	原子・分子のコピー、貼り付け、削除、挿入など
表示	回転、拡大・縮小、平行移動、正投影/透視投影、表示形 式(スペースフィリング、ボール&スティック等)など

計算条件設定

アンサンブル、境界条件、応力印加等の基本的な設定ができます。

 	<u></u>					倍更:	鬼(4	
	- ジミエロ 総ス	ノーション。(Fiell/ハー) (テップ数:	1000		[steps]	-98715	Lower	Upper
	時間	該)み幅:	0.1		[fs]	X	p 🔻	p 🔻
O NPH	出ナ]間隔ステップ数:	10		[steps]	Y:	р т	р т
○ NTP	出力	コステップ数:	100		[steps]	Z:	p 🔻	p 🔻
温度				-MDセル				
Start:	298	[K]		<u> </u>	定 ステッ	グ間隔:	1	[steps
End:	298	[K]) न	変 rema	ap:	none	_
Damp:	100	[fs]					Inone	÷
圧力				×	none			設定…
(<u> </u>	Ctort.	<u>ا</u>	.+m]	y:	none			設定…
🔘 tri	Start. End:		stm]	Z:	none			設定…
iso	Damp:	1000 Ff	s]	xy:	none			設定…
	- and			xz:	none			設定…
istress		- 該定			[=

ポテンシャル設定

LAMMPS添付のポテンシャルを選択して使用できます。 SCIGRESS MEのポテンシャルの一部も使用できます。

ポテンシャル		×
C LAMMPS	Ou_useam Ag_useam Aljnp.eam Au_useam Cu_smf7.eam Cu_useam Ni_smf7.eam Ni_useam Pd_useam Pt_useam	OK キャンセル
SCIGRESS ME	対象原子名: Cu GTB1 GTB2 HaliciogluPound Kilo_LSGM Kilo_YSZ KS LJDreiding MAM	
	パラメータが見つからなかった相互作用はスクリ	リプトから除去する(E)

分子動力学計算の実行

SCIGRESS MEのメニューからLAMMPSのMD計算を実行できます。 入力データを登録し、バッチ計算を行えます。

S)	LAMMPS(L) 結果(R) ツール(T) ヘルプ(H)
	計算条件の設定(C)	
	ポテンシャル関数の設定(P)	
-	計算実行(R)	
	バッチ計算(B)	- 9
	計算状況(S)	
		_

	バッチ計算			—
	ジョブの待ち行列(の)):		
	タイトル	バス		追加(A)
	Ni	C:¥SGME¥Data¥Ni.lin		削除(R)
変紀版に中仁	Ag	C:#SGME#Data#Ag.lin		
豆 球順に 夫打				
	•			
	•	III	4	
	上へ(U)	下へ(D) 状態(S): 未実	<u>.</u>	「へルプ

結果表示

アニメーション表示、物性値の時間変化グラフなどの結果表示機能があります。

二次解析

- - -

二体相関関数・積算配位数などの解析機能があります。

😥 2D-Graph

	ファイル(F) 表	示(V)	グラフ(G)	コメント	•(C)	ツール(г) 🔨	Jレプ(H)
	🖌 👼	6 ?	🗖	🛤 🗸 🖒	(🛉 👕		¤ 	• ‡ •	A _A 💥
 Ni.sim - Pair Correlation Function & Running Int □ ▼ アイル(F) 解析(A) 表示(V) ヘルレプ(H) ジミュレーション 全出力ステップ数 [ステップ] 100 時間刻み幅 [fs]: 2.000000e+001 解析開始時間 50 開始時間 [ps]: 9.999999e=001 解析系 7時間 100 終了時間 [ps]: 2.000000e+000 詳細設定 	()6		·		r[A]				
レディ	レディ								

解析条件設定画面

二体相関関数

SCIGRESS ME 2.3 の LAMMPS 連携機能 体験実習

FUÏITSU

実習課題

Niの一軸応力誘起相転移の分子動力学シミュレーション

- 1. Ni 結晶のモデリング
- 2. 計算条件設定(無応力)
- 3. ポテンシャルの設定
- 4. 計算実行
- 5. 結果表示(アニメーション、温度等の時間変化グラフ表示)
- 6. リスタートデータの作成
- 7. リスタート計算条件設定(応力印加)
- 8. リスタート計算実行
- 9. リスタートデータの作成2
- 10. リスタート計算条件設定2(応力印加)
- 11. リスタート計算実行2
- 12. リスタート結果表示(アニメーション、温度等の時間変化グラフ表示)
- 13. 二体相関関数の算出

(参考)Parrinello and Rahman, J Appl Phys, 52, 7182 (1981)

SCIGRESS MEの起動

[スタート]メニューから [**すべてのプログラム**]→[SCIGRESS ME 2.3]→[SCIGRESS ME] の順に選択し、SCIGRESS MEを起動

Main Scigress Me	
	◆ プロパティ MDセル 原子・分子一覧 基本セル定数 a: 20.000001 [A] Alpha: 90.0000 [deg] b: 20.000001 [A] Beta: 90.0000 [deg] c: 20.000001 [A] Gamma: 90.0000 [deg] 基本セル定数の設定を適用(T) 密度(D) ③ 密度の設定を適用(N)
レディ	新規 原子 0 個 0.000000 g/cm**3

モデルの作成

「モデリング」⇒「MDセルの作成」を選択

Image: I		
ファイル(F) 編集(E) 表示(V) 王ラ	<u> 「リング(M)」シミュレーション(S) LAMMPS(</u>	L) 結果(R) ツール(T) ヘルプ(H)
🛛 🗅 🚅 🖬 🖹 🎒 🎽 🖿	MDセルの作成(C)	E 0
💁 🖂 🎾 🎾 🖉 🖉 🖉 📗	MDセルの貼り合わせ(A)	
/ # - 7 🗟 🗣 🖓 🕂	MDセルの積み重ね(U)	<u></u> € <u></u> ⁴ ²
	原子・分子の発生(M)	プロパティ MDセル 原子・分子一覧
	モンテカルロによる構造探索(R)	基本セル定数
		a: 20.000001 [A] Alpha: 90.0000 [deg]
		b: 20.00000 [A] Beta: 90.0000 [deg]
		c: 20.000001 [A] Gamma: 90.0000 [deg]
		基本セル定数の設定を適用(T)
		密度(D)
		0.000000 [g/cm**3]
		密度の設定を適用(N)
Z		
X Y		
」 新規にMDセルを作成する		新規 原子 0 個 0.000000 g/cm**3

モデルの作成

種類:「**テンプレート**」、グループ:「基本単位形」、テンプレート:「FCC(Ag)」を選択し、 「次へ」をクリック

モデルの作成

「原子」タブを選択し、リストから「Ni」を選択し、「完了」をクリック

モデルの作成

基本セル定数をa=b=c=3.524に設定し、「基本セル定数の設定を適用」をクリック

モデルの作成

「モデリング」⇒「MDセルの積み重ね」を選択

Martin M	
ファイル(F) 編集(E) 表示(V) [モデリング(M)] シミュレーション(S) LAMMPS(L) 結果(R) ツール(T) ヘルプ(H)
D 🖆 🗟 🔮 🌡 🗎 MDセルの作成(C)	E 0
🎕 层 🍃 🍯 🎽 🎽 🎽 🎽 MDセルの貼り合わせ(A)	
📴 🗗 🕞 🕸 💿 🕂 MDセルの積み重ね(U)	€ ∂ ²
原子・分子の発生(M)	プロパティ MDセル 原子・分子一覧
モンテカルロによる構造探索(R)	基本セル定数
	a: 3.524000 [A] Alpha: 90.0000 [deg]
	b: 3.524000 [A] Beta: 90.0000 [deg]
	c: 3.524000 [A] Gamma: 90.0000 [deg]
	基本セル定数の設定を適用(T)
	密度(D)
	8.908423 [g/cm**3]
•	密度の設定を適用(N)
	·
2	
X Y	
MDセルを各方向に積み重ねる	新規 原子 4 個 8.908423 g/cm**3

モデルの作成

積み重ね数をa軸=b軸=c軸=8に設定し、「OK」をクリック

モデルの作成

「はい」をクリック

モデルの作成

ユニットセルを8×8×8に積み重ねたMDセルがメイン画面に表示される

モデルの作成

「ファイル」⇒「名前を付けて保存」を選択

Magentine Scigress Me		
ファイル(F) 編集(E) 表示(V) モデリング(M)	シミュレーション(S) LAMMPS(L) 結果(R) ツール(T) ヘルプ(H)	
新規作成(N) Ctrl+	N 🔒 🏭 🖾 🖌 🗗 🖉 🖺 🔳 🖉	
開<(0) Ctrl+	0	
上書き保存(S) Ctrl-	- <u>s</u> 💦 & 🔥 🔺 👗 🎆 🛛 🌜 🖗	
名前を付けて保存(A)	プロバティ MDセル 原子・分子一覧	
テンプレートとして保存(T)	サイヤルテ教	
リスタート(G)		
リスタート履歴(H)	a: 28.192001 [A] Alpha: 90.0000 [deg]	
インボート(I)	b: 28.192001 [A] Beta: 90.0000 [deg]	
SCIGRESS MEへようこそ!	c: 28.192001 [A] Gamma: 90.0000 [deg]	
印刷(P) Ctrl-	-P 基本セル定数の設定を適用(T)	
1 C:¥SGME¥Data¥zzzzzzzz.inp	● ● ● 32700+(D)	
2 C:¥SGME¥Data¥zzzzz.inp		
3 C:¥SGME¥Data¥zzzz.inp	0.300423 [g/cm**3]	
4 C:¥SGME¥Data¥zzz.inp	 ● ● ● 密度の設定を適用(N) 	
終了(X)		
	••••	
Z +	****	
<u>k</u> Y		
作業中のファイルを新しい名前で保存する	新規 原子 2048 個 8.908423 g/cm**3	

モデルの作成

ファイル名 Niを入力し、「保存」をクリック

計算条件設定

「LAMMPS」⇒「計算条件の設定」を選択

計算条件設定

アンサンブル:NTP、総ステップ数:10000、時間刻み幅:0.5、出力間隔ステップ数:100、 温度のDamp:50、圧力のDamp:500に設定し、「適用」、「OK」をクリック

引用元: http://lammps.sandia.gov/doc/fix_nh.html

•温度制御 The Tdamp parameter is specified in time units and determines how rapidly the temperature is relaxed.

A good choice for many models is a Tdamp of around 100 timesteps. Note that this is NOT the same as 100 time units for most units settings.

·圧力制御

the Pdamp parameter operates like the Tdamp parameter, determining the time scale on which pressure is relaxed.

A good choice for many models is a Pdamp of around 1000 timesteps. Note that this is NOT the same as 1000 time units for most units settings.

ポテンシャルの設定

「LAMMPS」⇒「ポテンシャル関数の設定」を選択。

ポテンシャルの設定

「LAMMPS」、「Ni_u3.eam」を選択し、「OK」をクリック

ポテンシャル		—		
LAMMPS	Cu_u3eam Ag_u3eam Al_inp.eam Au_u3eam Cu_smf7eam Ni u3eam Pd_u3eam Pd_u3eam Pd_u3eam Pt I13eam	OK キャンセル		
⑦ SCIGRESS ME	Areon BSAO CeGdO CIM CMAS94 cvff_nocross_nomorse FlahiveGraham GTB1 GTB2			
■ パラメータが見つからなかった相互作用はスクリプトから除去する(E)				

計算実行

「LAMMPS」⇒「計算実行」を選択。

計算実行

LAMMPSで分子動力学計算が実行されます

💷 C:¥Program Files¥LAMMPS 64-bit 20160216¥bin¥lmp_serial.exe				
3000 9.7812181 293.78516	-1639.3938	22670.02	-8948.6504	77. 🔺
734236 -9026.3846 -8971.847	-1241.101	-1655.7409	-2021.3394	490.
8058 138.48347 81.603758				
3100 10.108818 314.0541	1711.7105	22612.669	-8949.3092	83.
097306 -9032.4065 -8925.1506	2018.9346	1606.1845	1510.0123	68.08
5647 -324.95083 232.2951				
3200 10.452019 293.24806	-291.63692	22642.55	-8951.7282	77.
592122 -9029.3203 -8955.8497	-946.70214	-366.8896	438.68098	-396.1
2753 971.48049 -356.21263				
3300 10.764019 302.58804	-620.29837	22635.11	-8953.9474	80
.06344 -9034.0109 -8962.7108	-602.55444	-235.74326	-1022.5974	-176.7
2026 -674.96562 -429.47157				
3400 11.10722 283.47533	1895.7047	22606.845	-8956.4615	75.
006302 -9031.4678 -8929.7129	2086.8586	1868.0848	1732.1706	240.2
5008 -145.54235 362.94377				
3500 11.41922 292.2378	-1248.7171	22637.648	-8957.7566	
324812 -9035.0814 -8975.4001	-1027.5164	-1445.9414	-1272.6936	-636.5
2419 141.19892 266.63973				
3600 11.746821 279.97475	1387.4979	22609.377	-8958.4671	74.
080065 -9032.5471 -8938.8872	1111.5972	1284.2737	1766.6228	664.4
1568 224.76425 -284.58611				
3700 12.074422 284.91726	858.43186	22615.221	-8957.8256	75.
387829 -9033.2135 -8945.7086	398.23758	1583.0844	593.9736	747.9
b672 -347.51981 -324.75711				
1				-

結果表示

ログを確認し、「OK」をクリック

	計算状況	—
計算時間 ————————————————————————————————————	ログ(L): 9700 29.390452 301.15085 1473.8652 22610.379 -8953.4046 9800 29.686852 293.12328 361.20021 22625.544 -8954.6262 9900 29.998853 297.95693 -1434.3041 22642.442 -8955.4873 10000 30.310854 298.27745 1176.5334 22607.025 -8956.0952 Loop time of 30.3109 pn 1 procs for 10000 steps with 2048 atoms Performance: 14.252 ns/day, 1.684 hours/ns, 329.915 timesteps/s 99.7% CPU use with 1 MPI tasks × 1 OpenMP threads MPI task timing breakdown: Section min time avg time max time %varavg %total Pair 28.018 28.018 28.018 0.0 92.43 Bond 0 0 0 0 0.01 Neigh 0.0156 0.0156 0.0156 0.0 0.05	79.683165 77.559107 78.838069 78.922877
	Comm [0.2028 [0.2028 [0.0] 0.67 Output [1.0452 [1.0452 [0.0] 3.45 Modify [0.9516 [0.9516 [0.0] 3.14 Other [0.078 [0.026 [0.2028 [0.026 Nlocal: 2048 ave 2048 max 2048 min [0.026 [0.078 [0.026 Nlocal: 2048 ave 2048 max 2048 min [0.026 [0.026 [0.026 Nlocal: 2048 ave 2048 max 2048 min [0.026 [0.026 [0.026 Nlocal: 2048 ave 2048 max 2048 min [0.026 [0.026 [0.026 Nlocal: 2048 ave 2048 max 2048 min [0.026 [0.026 [0.026 Nlocal: 2048 ave 2048 max 4035 min [0.026 [0.026 [0.026 Nghost: 4035 ave 4035 max 4035 min [0.026 [0.026 [0.026 Neighs: 136486 ave 136486 max 136486 min [0.026 [0.026 [0.026 OK [0.026 [0.026 [0.026 [0.026 [0.026	

結果表示

▶ をクリックし、アニメーションを実行します

結果表示

■ をクリックし、アニメーションを停止し、■■をクリックしてウインドウを閉じます

結果表示

「結果」⇒「モニター変数」を選択

結果表示

温度、圧力、体積の時間変化のグラフが表示されます

結果表示

「**グラフ」**⇒「表示項目」を選択

結果表示

「内部エネルギー」にチェックを入れ、「適用」、「閉じる」をクリック

表示項目				—
ファイル(F)				
パス				
🔽 1. Nisim (C:¥SGME¥Data¥Nisim)				フロット点(P)
縦車曲(∨)				
項目	表示名	単位	<u>^</u>	
☑ 温度	Т	[K]		
■ 圧力	P	[atm]		
	<u> </u>	[1]		
■ ハミルトニアン	H	[J]		
□ スケール変数	S		-	
· · · · · · · · · · · · · · · · · · ·			•	
時間 - Time [ns]			•	「軸の設定(2)
AURI Auro (bel			•	¥₩♥/8XAE()V
	(本田(人)	88		
	週用(H)	開じる		

結果表示

内部エネルギーの時間変化のグラフが追加表示されます

結果表示

🔤 をクリックしてウインドウを閉じます

リスタートデータの作成1

「ファイル」⇒「リスタート」を選択

Mi.inp - SCIGRESS ME	
ファイル(F) 編集(E) 表示(V) モデリング(M	シミュレーション(S) LAMMPS(L) 結果(R) ツール(T) ヘルプ(H)
新規作成(N) Ctrl	-N 🗧 🇱 🖾 🖌 🖸 🗐 🗐 🔳 🗐
開<(0) Ctr	-0
上書き保存(S) Ctr	+S 🔽 🖧 🚓 🔺 🌋 🌌 🛛 🎸 🖑
名前を付けて保存(A)	プロバティ MDセル 原子・分子一覧
テンプレートとして保存(T)	基本セル字類
リスタート(G)	
リスタート履歴(H)	a: 28.192001 [A] Alpha: 90.0000 [deg]
インボート(I)	b: 28.192001 [A] Beta: 90.0000 [deg]
SCIGRESS MEへようこそ!	c: 28.192001 [A] Gamma: 90.0000 [deg]
印刷(P) Ctr	+P 基本セル定数の設定を適用(T)
1 Ni.inp	•••
2 aaa2.inp	
3 aaa1.inp	• • •
4 aaa.inp	 ● ● ● 密度の設定を適用(N)
終了(X)	
• • • • • • • • • •	••••
• • • • • • • • • • •	• • • • •
2	• • • • • • ·
X Y	
 リスタート用のデータを生成する	新規 原子 2048 個 8.908423 g/cm**3

リスタートデータの作成1

リスタート		×
リスタート シミュレーションを ァイル名(拡張子)	リスタートするには、新たにリスタート用の入力ファイルを作成します。 なし)を入力し、[OK]ボタンをクリックします。	以下に、フ
ファイル名(N):	Ni_rst001	
	■ 新規ジョブとしてリスタートする(1)	
	OK キャンセル へり	レプ

FUĴĨTSU

リスタートデータの作成1

リスタートデータが生成されます

リスタートデータの作成1

「LAMMPS」⇒「計算条件の設定」を選択

Ki_rst001.inp - SCIGRESS ME	
ファイル(F) 編集(E) 表示(V) モデリング(M) シミュレーション(S) LAM	MPS(L) 結果(R) ツール(T) ヘルプ(H)
D 🚅 🖬 🕀 🎒 ¾ 🖻 🖻 🗙 🍂 📽 🗊 🛢 📰 그 🚺	計算条件の設定(C)
🛛 💁 🔜 🖄 🖉 🏹 🏹 🏹 🖓 🖼 📾 🖬	ポテンシャル関数の設定(P)
[# ₱ ₫ ����� 🕂 🛛 其 🗸 ^ ∧ ∧ ஃ ۸ 🔺	計算事行(R)
	バッチ計算(B)
	計算状況(S)
	a: 28.192001 [A] Alpha: 90.0000 [deg]
	b: 28.192001 [A] Beta: 90.0000 [deg]
	c: 28,192001 [A] Gamma: 90,0000 [deg]
	基本セル定数の設定を適用(T)
	密度(D)
	8.908423 [#/cm**3]
	密度の設定を適用(N)
••••••	
x y	
	リスタート 原子 2048 個 8.908423 g/cm**3

リスタートデータの作成1

アンサンブル:「NPH」、圧力:「stress」に設定し、「設定」をクリック

'昇榮件' 基本設定 外場	オプション				
アンサンブル の NEV の NTV の NPH の NTP	ーシミュレーション時間(X) - 総ステップ数: 時間刻み幅: 出力間隔ステップ数: 出力ステップ数:	10000 0.5 100 100	[steps] [fs] [steps] [steps]	境界条件 Lower X: p ▼ Y: p ▼ Z: p ▼	Upper
温度 Start: 24 End: 24 Damp: 56	98 [K] 98 [K] 0 [fs]	MD1 ©	Zル 一定 ステッ 可変 rema	プ間隔: 1 ap: none	[steps]
圧力 ① tri S ② aniso I ③ iso I ④ stress	Start: 1 End: 1 Damp: 500 [設定]	[atm] z [atm] z [fs] × y	: none none y: none z: none z: none		設定… 設定… 設定… 設定… 設定…

All Rights Reserved, Copyright (C) FUJITSU LIMITED 2016

FUĴĨTSU

リスタートデータの作成1

FUjitsu

Y欄でStart: 30000、End: 30000、Damp: 500に設定し、「OK」をクリック

Stress						—
- X			XY			
Start:	0	[atm]	Start:	0	[atm]	UK
End:	0	[atm]	End:	0	[atm]	キャンセル
Damp:	1000	[fs]	Damp:	1000	[fs]	
Y			xz			
Start:	30000	[atm]	Start:	0	[atm]	
End:	30000	[atm]	End:	0	[atm]	
Damp:	500	[fs]	Damp:	1000	[fs]	
Z			YZ			
Start:	0	[atm]	Start:	0	[atm]	
End:	0	[atm]	End:	0	[atm]	
Damp:	1000	[fs]	Damp:	1000	[fs]	

リスタートデータの作成1

「適用」、「OK」をクリック

 	 	<u>- いい時間(X)</u>				_ 请思言	冬件	
NEV	総ス5	デップ数:	10000		[steps]	-7671-3	Lower	Upper
© NTV	時間	刻み幅:	0.5		[fs]	X	p 🔻	p 🔻
NPH	出力	間隔ステップ数:	100		[steps]	Y:	p 🔻	p 🔻
O NTP	出力)	ステップ数:	100		[steps]	Z:	p 🔻	p 🔻
温度				-MDセル				
Start: 2	98	_ [K]		<u> </u>	ल्ल २.नः	/7問稿:	1	[steps]
		1 100				2 1631143	· · ·	
End: 2	98	_ кі		् () न	変 rema	ap:	none	
End: 2 Damp: 5	98 0	(K] [fs]		े () ग	変 rema	ab:	none	Ŧ
End: 2 Damp: 5 圧力	98	(K] (fs]		© न ×	変 rema	ap:	none	▼ ■ ■ 認定…
End: 2 Damp: 5 圧力	98 0 Start	(K] (fs]	+m]	ि न × y:	変 rema none none	3D:	none	▼ 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕
End: 2 Damp: 5 圧力 ① tri 3	98 0 Start:	[K] [fs] [1 [a	itm]	ा ज () ज () () () () () () () () () () () () ()	変 rema none none none	ap:		▼ 設定… 設定… 設定…
End: 2 Damp: 5 圧力 ① tri 3 ② aniso	98 0 Start: End: Damp:	[K] [fs] 1 [a [500 [fs]	ıtm] ıtm] s]	े न ×: y: z: xy:	変 rema none none none none	ap:		▼ 設定… 設定… 設定…
End: 2 Damp: 5 圧力 ① tri 3 ② aniso ③ iso ④ stress	98 0 Start: End: Damp:	[K] [fs] 1 [a 500 [f:	ıtm] ıtm] s]	ि न >: y: z: xy: xz:	変 rema none none none none none	ap:		▼ 設定… 設定… 設定… 設定…

リスタート計算の実行1

「LAMMPS」⇒「計算実行」をクリック

リスタート計算の実行1

LAMMPSでリスタート計算が実行されます

C:¥Program Files¥LAMMPS 64-bit 20160216	¥bin¥lmp_serial.ex	e		
12700 9.5628171 297.38803	9499.1005	22517.543	-8948.1007	78. 🔺
687541 -9026.7883 -8814.5971	18.612375	28921.818	-443.12846	-28.37
2455 79.705266 201.60496				-
12800 9.90601/1 296.00619	9245.3427	22522.47	-8948.1/64	/8.
321912 -9026.4983 -8818.2107	-783.37158	28/34.853	-215.45347	498.9
/04/ -246./0812 -400.3/953	10000 014	00500 300	00.47 0000	70
	1407 7714	22506.722	-8947.9032	/6. 11.00
989669 -9024.8929 -8795.6749	1437.7714	29999.578	1072.4923	-11.98
12000 10 502410 205 40005	0000 007E	22527 026	-0017 0700	70
105242 -0026 0577 -0021 0702	-0300.3375 -015 RORR5	22027.020	-781 85010	70. 215 5 -
6997 -403 07129 -234 56612	315.03005	20303.343	704.00040	215.5
	9960 4716	22514 798	-8947 4296	78
361597 -9025.7912 -8807.4588	538, 15183	29476.362	-133.09954	318.0
2466 12.454951 324.19586		20110.002		0.010
13200 11.26322 298.61534	9053.9618	22524.989	-8947.2857	79.
012281 -9026.298 -8819.9961	-1180.0645	29034.773	-692.82292	-396.1
5206 1011.362 92.996281				
13300 11.60642 297.32828	8936.4197	22527.124	-8947.2377	78.
671729 -9025.9094 -8821.5887	-1517.5539	29070.907	-744.09368	-606.2
7458 872.19333 13.284026			~~	=
13400 11.949621 299.18254	9228.8156	22521.535	-8947.3399	/9.
	-679.26883	29156.545	-790.82928	-17.07
8683 -137.68922 164.1893				
				*

リスタート計算結果1

「OK」をクリック

計算状況
ログ(L):
atom_style full units metal boundary ppp
read_restart Nirestart.10000 triclinic box = (-0.0412546 -0.0399374 -0.0444666) to (28.2333 28.2319 28.2365) with ti 1 by 1 MPI processor grid 2048 atoms
0 = max # of 1-2 neighbors 0 = max # of 1-3 neighbors 0 = max # of 1-4 neighbors 1 = max # of special neighbors
pair_style eam pair_coeff 1.1 Ni_u3.eam Reading potential file Ni_u3.eam with DATE: 2007-06-11
timestep 0.0005
run_style verlet atom_modify sort 0 0
fix 1 all nph x 0 0 1.0 y 30397.5 30397.5 0.5 z 0 0 1.0 yz 0 0 1.0 xz 0 0 1.0 xy 0
compute 1 all pe/atom
ОК

リスタート計算結果1

■ をクリックしてウインドウを閉じます

リスタートデータの作成2

「ファイル」⇒「リスタート」を選択

Mi_rst001.inp - SCIGRESS ME	
ファイル(F) 編集(E) 表示(V) モデリング(M) シミュレー	-ション(S) LAMMPS(L) 結果(R) ツール(T) ヘルプ(H)
新規作成(N) Ctrl+N	
開<(0) Ctrl+0	
上書き保存(S) Ctrl+S S	→ 🛧 🔺 💑 💹 🌜 🖓
名前を付けて保存(A)	プロバティ MDセル 原子・分子一覧
テンプレートとして保存(T)	# the state
リスタート(G)	
リスタート履歴(H)	a: 28.192001 [A] Alpha: 90.0000 [deg]
インボート(I)	b: 28.192001 [A] Beta: 90.0000 [deg]
SCIGRESS MEへようこそ!	c: 28.192001 [A] Gamma: 90.0000 [deg]
印刷(P) Ctrl+P	基本セル定数の設定を適用(T)
1 Ni_rst001.inp • •	• 密度(D)
2 Ni.inp	8 908423 [= /owww2]
3 aaa2.inp	• [E/Ciliwero]
4 aaa1.inp	 密度の設定を適用(N)
終了(X)	
•••••••••••	•
	•
Ζ	- - -
<u>X</u> Y	
リスタート用のデータを生成する	リスタート 原子 2048 個 8.908423 g/cm**3 。

リスタートデータの作成2

「OK」をクリック

リスタート	
リスタート シミュレーションを ァイル名(拡張子	リスタートするには、新たにリスタート用の入力ファイルを作成します。 以下に、フ なし)を入力し、[OK]ボタンをクリックします。
ファイル・名(N):	Nijrst002
	OK キャンセル ヘルプ

リスタートデータの作成2

リスタートデータが生成されます

リスタートデータの作成2

「LAMMPS」⇒「計算条件の設定」を選択

Ki_rst002.inp - SCIGRESS ME	
ファイル(F) 編集(E) 表示(V) モデリング(M) シミュレーション(S) LAMMPS(L	<u>.) 結果(R) ツール(T) ヘルプ(</u> H)
□ 🖆 🖬 🔮 🎄 🖻 🖻 🗙 🍂 💱 🗰 🛢 ユ Ū 🔡 📑 第	6件の設定(C)
🛛 💁 🔙 🐚 🐚 🐚 🐚 🐚 🐿 🔛 🔜 🖬 🖬 🖬	νシャル関数の設定(P)
[# []] [] (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$	≦í∓(R)
/「いチ	·計算(B)
計算状	況(S)
	a: 28.192001 [A] Alpha: 90.0000 [deg]
	b: 28.192001 [A] Beta: 90.0000 [deg]
	c: 28.192001 [A] Gamma: 90.0000 [deg]
• • • • • • • • • • • • • • • • • • • •	基本セル定数の設定を適用(T)
	密度(D)
	8.908423 [#/cm**3]
• • • • • • • • • • • • • • • • • • • •	
	密度の設定を適用(N)
• • • • • • • • • • • • • • • • • • • •	
7	
XY	
	リスタート 原子 2048 個 8.908423 g/cm**3 🦼

リスタートデータの作成2

「設定」をクリック

計算条件					×
基本設定 外場	オプション				
- アンサンブル	」 シミュレーション時間(X) —			境界条件	
○ NEV	総ステップ数:	10000	[steps]	Lower	Upper
© NTV	時間刻み幅	0.5	[fs]	X: p 🗸	p 🔻
NPH	出力間隔ステップ数:	100	[steps]	Y: p 🔻	p 🔻
© NTP	出力ステップ数:	100	[steps]	Z: p 🔻	p 🔻
温度		- MDセル	,		
Start: 29	98 [K]	• -	ट रज्य	7間隔: 1	[steps]
End: 29	98 [K]	0 1	変 remap	none	-
Damp: 50) [fs]				
		×:	none		設定
	Hart I	y:	none		設定…
	ind: 1	tm]	none		設定
ico [.no	al XV:	none		設定
stress		XZ:	none		設定
		yz:	none		[設定]
		ОК	キャンセル	適用(A)	ヘルプ

リスタートデータの作成2

Y欄でStart: 60000、End: 60000に設定し、「OK」をクリック

Str	ess						×
l r	х			XY			
	Start:	0	[atm]	Start:	0	[atm]	
	End:	0	[atm]	End:	0	[atm]	キャンセル
	Damp:	1000	[fs]	Damp:	1000	[fs]	
	Y			xz			
	Start:	60000	[atm]	Start:	0	[atm]	
	End:	60000	[atm]	End:	0	[atm]	
	Damp:	500	[fs]	Damp:	1000	[fs]	
	z			YZ			
	Start:	0	[atm]	Start:	0	[atm]	
	End:	0	[atm]	End:	0	[atm]	
	Damp:	1000	[fs]	Damp:	1000	[fs]	

リスタートデータの作成2

「OK」をクリック

	オブション			(4日 2 /4	
- アンサンフル —	ーンミュレーション時間(X) 総ステップ数:	10000	[steps]	─ 境界条件 Lower	Upper
○ NTV	時間刻み幅	0.5	[fs]	X: p 🗸	• p •
NPH	出力間隔ステップ数:	100	[steps]	Y: p 🔻	• p •
NTP	出力ステップ数:	100	[steps]	Z: p -	• p •
			Dセル		
Start: 💈	98 [K]		◎ 一定 ステッ	ブ間隔: 1	[steps]
End:	198 [K]		○可変 rema	ip: none	
Damp: [i0 [fs]			1010	
_ 圧力			x: none		設定
	Start: 1	[atm]	y: none		設定
, materi		Forcing			
🔘 tri	End: 1	[atm]	z: none		設定…
◯ tri ◯ aniso ◯ iso	End: 1 Damp: 500	[atm] [fs]	z: none _{XY} : none		
◯ tri ◯ aniso ◯ iso ම stress	End: 1 Damp: 500	[atm] [fs]	z: none xy: none xz: none		

リスタート計算の実行2

「LAMMPS」⇒「計算実行」を選択

リスタート計算の実行2

LAMMPSでリスタート計算が実行されます

C:¥Program Files¥LAMMPS 64-bit 20160216	i¥bin¥lmp_serial.ex	e		
22200 8.2836151 383.13354	21578.792	22561.207	-8847.2644	101 🔺
.37542 -8948.6398 -8543.4005	15451.971	32306.5	16977.904	-657.6
5606 -951.94784 696.70362				
22300 8.642416 381.18164	21147.743	22600.632	-8845.1048	100
.85895 -8945.9637 -8546.7904	16529.692	28701.68	18211.855	1171.
9499 -98.938659 3098.3822				
22400 9.0012159 378.3716	20992.105	22626.012	-8842.7414	100
.11543 -8942.8568 -8546.2899	12463.733	35637.747	14874.835	93.82
0634 -50.513243 2251.567				
22500 9.3600171 381.20236	11619.582	22759.266	-8840.6281	100 ≡
.86444 -8941.4925 -8675.5694	-3804.0265	40858.35	-2195.5768	-1951.
0753 -1669.035 3124.6338				
22600 9.703217 395.58143	4775.5035	22845.251	-8840.0826	104
.66907 -8944.7517 -8771.9892	-10264.465	39595.583	-15004.608	-853.0
3686 -841.08/38 945.79241				
22/00 10.046418 392.10408	/210.542	22812.355	-8840.3869	103
./4898 -8944.1359 -8/3/./206	-4505.9009	42052.662	-15915.135	618.9
3388 222.43887 141.49876	7501 7001	~~~~~~		100
22800 10.389619 379.87158	/521./001	22810.374	-8841.9412	100
	-3206.8137	38905.022	-13133.108	263.2
	0057 050	00705 407	0041 10	110
	9357.858	22765.427	-8841.19	110
	-773.5316	37313.486	-8466.3799	66Z.
3203 110.36347 319.69226				
				· · ·

リスタート計算結果2

「OK」をクリック

計算状況
ログ(L):
atom_style full units metal boundary ppp
read_restart Ni_rst001restart.20000 triclinic box = (-0.272342_0.4596030.277525) to (28.4643_27.7324_28.4695) with tilt (-(1 by 1 by 1 MPI processor grid
0 = max # of 1-2 neighbors 0 = max # of 1-3 neighbors 0 = max # of 1-4 neighbors 1 = max # of special neighbors
pair_style eam pair_coeff 1 1 Ni_u3eam Reading potential file Ni_u3eam with DATE: 2007-06-11
timestep 0.0005
run_style verlet atom_modify sort 0 0
fix 1 all nph x 0 0 1.0 y 60795 60795 0.5 z 0 0 1.0 yz 0 0 1.0 xz 0 0 1.0 xy 0 0 1 Resetting global state of Fix 1 Style nph from restart file info
compute 1 all pe/atom 👻
ОК

リスタート計算結果2

「表示」⇒「ビューの詳細設定」を選択

リスタート計算結果2

「左から」、「適用」をクリックし、 🔤 をクリックしてウインドウを閉じます

ビューの詳細設定	×
 ✓ スケルトン表示で高速モード(F) XY面(X) 	上から(T) をから(L) 右から(R)
YZ面(Y) ZX面(Z)	下から(B)
数值指定。	
角度(G):	20 [deg]
クリッピング範囲(C):	20 倍 拡大·縮小
回転角度(O) 移動	□量(M) 拡大量(S)
H: 0 H:	0 1
V: 90 V:	0 適用(A)
D: 0 D:	0 Utzット(E)

リスタート計算結果2

▶ をクリックし、アニメーションを実行します

リスタート計算結果2

■ をクリックし、アニメーションを停止します

リスタート計算結果2

「描画」⇒「軌跡」を選択

リスタート計算結果2

原子の軌跡が表示されます

リスタート計算結果2

🔜 をクリックしてウインドウを閉じます

リスタート計算結果2

「**結果**」⇒「モニター変数」を選択

Mi_rst002.inp - SCIGRESS ME	
	E 原子配置 (3D-Atomic Configuration)
	モニター変数 (Monitoring)
▋▆▐▋▋▕\$ ♥ ♥ ♥ ₽ 其 ╯ ^ (^ & & ▲ & @]	C 二次解析(A) ▶
	プロパティ MDセル 原子・分子一覧
	基本セル定数
	a: 28.192001 [A] Alpha: 90.0000 [deg]
	b: 28.192001 [A] Beta: 90.0000 [deg]
	c: 28.192001 [A] Gamma: 90.0000 [deg]
	基本セル定数の設定を適用(T)
	密度(D)
	8.908423 [g/cm**3]
	密度の設定友適用(N)
• • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • •	
2	
<u>X</u> Y	
) 計算した結果のモニター変数	リスタート 原子 2048 個 8.908423 g/cm**3 🦼

リスタート計算結果2

温度、圧力、体積の時間変化のグラフが表示されます

リスタート計算結果2

🔤 をクリックしてウインドウを閉じます

二次解析(二体相関関数)

「結果」⇒「二次解析」⇒「二体相関関数・積算配位数」を選択

Ri_rst002.inp - SCIGRESS ME	
ファイル(F) 編集(E) 表示(V) モデリング(M) シミュレーション(S) LAMMPS(L)	(結果(R) ツール(T) ヘルプ(H)
D 🗳 🖬 🕀 🎒 X 🖻 🛍 🗙 🍂 💱 🗰 🔳 그 🗗 🖉 🖺 🗉	原子配置 (3D-Atomic Configuration)
🍕 🔙 🐚 🐚 🐚 🐚 🕷 🖉 📕 📾 🔚	モニター変数 (Monitoring)
🛛 🖉 🗗 🗗 ଢ 💿 🕂 🖬 🔤 平均二垂変位(M)	二次解析(A)
二体相関関数・積算配位数(P)	プロパティ MDセル 原子・分子→暫
干渉関数(I)	基本セル定数
ホロノイ多面体(V)	
分子内座標(C)	a: 28.192001 [A] Alpha: 90.0000 [deg]
速度目己相関関数・スペクトル(S)	b: 28.192001 [A] Beta: 90.0000 [deg]
	c: 28.192001 [A] Gamma: 90.0000 [deg]
	「基本セル宗教の設定を決田(工)」
	本41277年秋7月末之週用(1)
● 12/J1±テ+1iil(「)	密度(D)
	8.908423 [g/cm**3]
	変度の設定を適用(N)
• • • • • • • • • • • • • • • • • • • •	
••••••••••	
Ζ.	
KY	
 二体相関関数と積算配位数の計算	リスタート 原子 2048 個 8.908423 g/cm**3
二次解析(二体相関関数)

解析開始時間:51、解析終了時間:100 を設定し、 建 をクリック

📡 Ni_rst002.sim - Pair Correlation Function & Run 👝 📼 🕰
ファイル(F) 解析(A) 表示(V) ヘルプ(H)
全出力ステップ数 [ステップ] 100
時間刻み幅 [fs]: 2.000000e+001
解释析開始時間
51
開始時間 [ps]: 1.020000e+000
解析終了時間
100
終了時間 [ps]: 2.000000e+000
· · · · · · · · · · · · · · · · · · ·
【iiii和:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:
レディ

二次解析(二体相関関数)

「OK」をクリック

出力ファイル名	—	
出力ファイル名:	Ni_rst0020000	
ファイル名を変更する場合は、拡張子を付けずに入力し てください。		
ОК	キャンセル	

二次解析(二体相関関数)

プログレスバーが100%になったら、「**閉じる**」をクリック

Pair Correlation Function		
MD出力ファイル:	Ni_rst002.sim	
解析開始時刻:	17:54:43	
経過時間[秒]:	3	100 %
残り時間[秒]:	0	
計算終了		
	閉じる	

二次解析(二体相関関数)

💵 をクリック

🔊 Ni_rst002.sim - Pair Correlation Function & Run 👝 💷 💌
ファイル(F) 解析(A) 表示(V) ヘルプ(H)
シュレーション 全地力ステップ数「ステップ100
時間刻み幅 [fs]: 2.000000e+001
解析開始時間
51
開始時間 [ps]: 1.020000e+000
解析終了時間
終了時間 [ps]: 2.000000e+000
· 詳細設定…
レティ

二次解析(二体相関関数)

二体相関関数のグラフが表示されます

二次解析(二体相関関数)

「**ツール**」→「プロット点情報」を選択

二次解析(二体相関関数)

「プロット点の選択」をクリックし、十字の中心を第1ピークの位置に合わせクリック

※十字線を消すには、グラフ内で右クリック

二次解析(二体相関関数)

第1ピークの座標値が表示されます。

プロッ	卜点情報	×
─座標	值	
X	2.450000e+000	
Y:	6.742770e+000	
ブ	ロット点の選択(P)	閉じる ヘルゴ

二次解析(二体相関関数)

「閉じる」をクリック。 をクリックしてウインドウを閉じます。

שםל	ト点情報
- 座標(值
X	2.450000e+000
Y:	6.742770e+000
ブ	ロット点の選択(P) 閉じる ヘルプ

(参考)SCIGRESS MEが生成したLAMMPS入力データ Ni.lin FUJITSU

Created by SCIGRESS ME

variable FileName string Ni

log \${FileName}.log

atom_stylefullunitsmetalboundaryp p p

read_data Ni.ldt

pair_style eam pair_coeff 1 1 Ni_u3.eam

timestep 0.0005 velocity all create 298 4928459

run_style verlet atom modify sort 0 0

fix 1 all npt temp 298 298 0.1 tri 1.01325 1.01325 0.5

compute 1 all pe/atom

thermo_style custom step cpu temp press vol etotal ke pe enthalpy pxx pyy pzz pxy pyz pxz thermo 100 dump 1 all custom 100 \${FileName}.dmp id mol type q xsu ysu zsu vx vy vz c_1 dump_modify 1 sort id

restart 10000 \${FileName}.restart

run 10000

(参考)SCIGRESS MEが生成したLAMMPS入力データ Ni.ldt FUJITSU

Created by SCIGRESS ME

2048 atoms

1 atom types

0.00000000 28.19200000 xlo xhi 0.00000000 28.19200000 ylo yhi 0.00000000 28.19200000 zlo zhi 0.00000000 0.00000000 0.00000000 xy xz yz

#
SCIGRESS Molecule Types
#
1 Ni
#
SCIGRESS Atom Types
#
1 Ni
#
SCIGRESS Bond Types
#
#

1 58.69340000

Atoms

. . .

- $2 \quad 1 \quad 1 \ +0.000000 \ +1.76200000 \ +1.76200000 \ +0.00000000 \\$
- $3 \quad 1 \quad 1 \ +0.000000 \ +1.76200000 \ +0.00000000 \ +1.76200000 \ \\$

LAMMPSに関するお問合せについて

◆ サポートの範囲:

SCIGRESS ME のLAMMPS連携機能の使用方法に関するお問合せ ※サポート製品をご購入いただく必要がございます。

◆サポートの範囲外:

LAMMPSは弊社製品ではないため、 以下のお問合せはサポート製品の対象外となります。

- LAMMPSの入手方法、インストール方法
- ▶ LAMMPSの計算方法や理論(手法、ポテンシャル、等)
- ➢ LAMMPSによる計算のノウハウ、事例、精度比較、等
- ▶ コマンドラインでのLAMMPSの実行方法等

※受託計算や計算方法の調査等はサポートとは別費用(個別見積)となります。

shaping tomorrow with you