問題2-7 横倒れ座屈

下図に示す片持ち梁の先端に荷重が作用した場合の横倒れ座屈荷重を有限要素法で求め、理論と比較せよ。材料のヤング率は3000MPa, ポアソン比は0.3とする。

横倒れ座屈荷重は下図に示すような荷重-たわみ曲線を計算により作成し、座屈が起こらない場合と座屈が発生する場合との比較より求めよ。
略解） 片持ち梁の座屈荷重は Timoshenko と Trahair の座屈公式が下記のように示される。

\[P_{Tim} : \text{Timoshenkoの座屈公式} \]

\[P_{Tim} = \beta_1 \sqrt{\frac{EI_y GJ}{l^2}}, \quad \beta_1 = \frac{4.013}{\left(1 - \sqrt{\frac{EI_y}{GJl^2}} \right)} \]

\[P_{Tra} : \text{Trahairの座屈公式} \]

\[P_{Tra} = \beta_2 \sqrt{\frac{EI_y GJ}{l^2}}, \quad \beta_2 = 3.95 + 3.52 \sqrt{\pi^2 EI_y / GJl^2} \]

\[G = \frac{E}{2(1 + \nu)}, \quad \nu = \frac{\varepsilon_x}{\varepsilon_y} \]

G: せん断弾性係数, E: ヤング率, \(\nu \): ポアソン比
\(\varepsilon_x \): 軸直角方向ひずみ, \(\varepsilon_y \): 軸方向ひずみ

細長い長方形断面なら

\[J \approx \frac{bt^3}{3}, \quad I_y \approx \frac{(bt)^3}{144} \]
(bは幅, tは厚さ)

\(I_y \): y軸回りの断面二次モーメント, \(J \): ねじり定数, \(I_y \): そりねじり定数, l: 槓の軸長

\(E = 3000 \) (MPa)
\(G = 3000/(2*(1+0.3)) = 1153 \) (MPa)

\(b = 20 \) (mm), \(t = 3 \) (mm), \(l = 180 \) (mm)

\(I_y = bt^3/12 = 20*3^3/12 = 45 \)

\(J = 20*3^3/3 = 180 \)

\(I_o = (20*3)^3/144 = 1500 \)

\(\beta_1 = 4.013/\sqrt{(3000*1500/1153*180*200^2)^2} = 4.206 \)

\(\beta_2 = 3.95 + 3.52 \sqrt{\pi^2 3000*1500/1153*180*200^2} = 4.207 \)

\(\beta \) の値は Timoshenko も Trahair もほぼ同じ値なので 4.2 を用いると

横倒れの座屈荷重 \(P \) は

\(P = 4.2 \sqrt{(3000*45*1153*180)/200^2} \)

=17.5 (N)