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1 Introduction

Monte Carlo refers to a broad class of algorithms that solve problems through
the use of random numbers. They first emerged in the late 1940’s and 1950’s
as electronic computers came into use [1], and the name means just what
it sounds like, whimsically referring to the random nature of the gambling
at Monte Carlo, Monaco. The most famous of the Monte Carlo methods is
the Metropolis algorithm [2], invented just over 50 years ago at Los Alamos
National Laboratory. Metropolis Monte Carlo (which is not the subject of
this chapter) offers an elegant and powerful way to generate a sampling of
geometries appropriate for a desired physical ensemble, such as a thermal
ensemble. This is accomplished through surprisingly simple rules, involving
almost nothing more than moving one atom at a time by a small random
displacement. The Metropolis algorithm and the numerous methods built
on it are at the heart of many, if not most, of the simulations studies of
equilibrium properties of physical systems.

In the 1960’s researchers began to develop a different kind of Monte Carlo
algorithm for evolving systems dynamically from state to state. The ear-
liest application of this approach for an atomistic system may have been
Beeler’s 1966 simulation of radiation damage annealing [3]. Over the next
20 years, there were developments and applications in this area (e.g., see
[3, 4, 5, 6, 7]), as well as in surface adsorption, diffusion and growth (e.g., see
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17]), in statistical physics (e.g., see [18, 19, 20]),
and likely other areas, too. In the 1990’s the terminology for this approach
settled in as kinetic Monte Carlo, though the early papers typically don’t
use this term [21]. The popularity and range of applications of kinetic Monte
Carlo (KMC) has continued to grow and KMC is now a common tool for
studying materials subject to irradiation, the topic of this book. The pur-
pose of this chapter is to provide an introduction to this KMC method, by
taking the reader through the basic concepts underpinning KMC and how
it is typically implemented, assuming no prior knowledge of these kinds of
simulations. An appealing property of KMC is that it can, in principle, give
the exact dynamical evolution of a system. Although this ideal is virtually
never achieved, and usually not even attempted, the KMC method is pre-
sented here from this point of view because it makes a good framework for
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understanding what is possible with KMC, what the approximations are in
a typical implementation, and how they might be improved. Near the end,
we discuss a recently developed approach that comes close to this ideal. No
attempt is made to fully survey the literature of KMC or applications to
radiation damage modeling, although some of the key papers are noted to
give a sense of the historical development and some references are given for
the reader who wants a deeper understanding of the concepts involved. The
hope is that this introductory chapter will put the reader in a position to
understand (and assess) papers using KMC, whether for simulations of radi-
ation damage evolution or any other application, and allow him/her to write
a basic KMC program of their own if they so desire.

2 Motivation: the time-scale problem

Our focus is on simulating the dynamical evolution of systems of atoms.
The premiere tool in this class of atomistic simulation methods is molecular
dynamics (MD), in which one propagates the classical equations of motion
forward in time. This requires first choosing an interatomic potential for the
atoms and a set of boundary conditions. For example, for a cascade simula-
tion, the system might consist of a few thousand or million atoms in a periodic
box and a high velocity for one atom at time zero. Integrating the classical
equations of motion forward in time, the behavior of the system emerges nat-
urally, requiring no intuition or further input from the user. Complicated and
surprising events may occur, but this is the correct dynamical evolution of
the system for this potential and these boundary conditions. If the potential
gives an accurate description of the atomic forces for the material being mod-
eled, and assuming both that quantum dynamical effects are not important
(which they can be, but typically only for light elements such as hydrogen
at temperatures below T=300K) and that electron-phonon coupling (non-
Born-Oppenheimer) effects are negligible (which they will be unless atoms
are moving extremely fast), then the dynamical evolution will be a very accu-
rate representation of the real physical system. This is extremely appealing,
and explains the popularity of the MD method. A serious limitation, how-
ever, is that accurate integration requires time steps short enough (∼ 10−15

s) to resolve the atomic vibrations. Consequently, the total simulation time
is typically limited to less than one microsecond, while processes we wish to
study (e.g., diffusion and annihilation of defects after a cascade event) often
take place on much longer time scales. This is the “time-scale problem.”

Kinetic Monte Carlo attempts to overcome this limitation by exploiting
the fact that the long-time dynamics of this kind of system typically consists
of diffusive jumps from state to state. Rather than following the trajectory
through every vibrational period, these state-to-state transitions are treated
directly, as we explain in the following sections. The result is that KMC can
reach vastly longer time scales, typically seconds and often well beyond.
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3 Infrequent-event systems, state-to-state dynamics,
and the KMC concept

An infrequent-event system is one in which the dynamics is characterized by
occasional transitions from one state to another, with long periods of relative
inactivity between these transitions. Although the infrequent-event designa-
tion is fairly general (and hence also the possible applications of KMC), for
simplicity we will restrict our discussion to the case where each state corre-
sponds to a single energy basin, and the long time between transitions arises
because the system must surmount an energy barrier to get from one basin
to another, as indicated schematically in Fig. 1. This is an appropriate de-
scription for most solid-state atomistic systems. For a system that has just
experienced a knock-on event causing a cascade, this infrequent-event desig-
nation does not apply until the excess initial energy has dissipated and the
system has thermally equilibrated. This usually takes a few ps or a few tens
of ps.

Fig. 1. Contour plot of the potential energy surface for an energy-barrier-limited
infrequent-event system. After many vibrational periods, the trajectory finds a way
out of the initial basin, passing a ridgetop into a new state. The dots indicate saddle
points.

To be a bit more concrete about the definition of a state, consider a
256-atom system in a perfect fcc crystal geometry with periodic boundary
conditions. Remove one of the atoms and put it back into the crystal some-
where else to create an interstitial. Now, using a steepest descent or conjugate
gradient algorithm, we can “relax” the system: we minimize the energy to
obtain the geometry at the bottom of the energy basin where the forces on
every atom are zero. This defines a particular state i of the system and the
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geometry at the minimum is Ri. If we heat the system up a bit, e.g., by giv-
ing each atom some momentum in a random direction and then performing
MD, the system will vibrate about this minimum. As it vibrates, we still say
it is in state i (assuming it has not escaped over a barrier yet) because if
we stop the MD and minimize the energy again, the system will fall back to
the exact same geometry Ri. Adjacent to state i there are other potential
basins, each separated from state i by an energy barrier. The lowest barriers
will correspond to moving the interstitial (perhaps through an interstitialcy
mechanism) or moving an atom into the vacancy. Even though only one or
a few atoms move in these cases, the entire system has been taken to a new
state. This is an important point – we don’t move atoms to new states, we
move the entire system from state to state.

The key property of an infrequent-event system caught in a particular
basin is that because it stays there for a long time (relative to the time of one
vibrational period), it forgets how it got there. Then, for each possible escape
pathway to an adjacent basin, there is a rate constant kij that characterizes
the probability, per unit time, that it escapes to that state j, and these rate
constants are independent of what state preceded state i. As we will discuss
below, each rate constant kij is purely a property of the shape of the potential
basin i, the shape of the ridge-top connecting i and j, and (usually to a much
lesser extent) the shape of the potential basin j. This characteristic, that the
transition probabilities for exiting state i have nothing to do with the history
prior to entering state i, is the defining property of a Markov chain [22, 23].
The state-to-state dynamics in this type of system correspond to a Markov
walk. The study of Markov walks is a rich field in itself, but for our present
purposes we care only about the following property: because the transition
out of state i depends only on the rate constants {kij}, we can design a
simple stochastic procedure to propagate the system correctly from state
to state. If we know these rate constants exactly for every state we enter,
this state-to-state trajectory will be indistinguishable from a (much more
expensive) trajectory generated from a full molecular dynamics simulation,
in the sense that the probability that we see a given sequence of states and
transition times in the KMC simulation is the same as the probability for
seeing that same sequence and transition times in the MD. (Note that here
we are assuming that at the beginning of an MD simulation, we assign a
random momentum to each atom using a fresh random number seed, so that
each time we perform the MD simulation again, the state-to-state trajectory
will in general be different.)

4 The rate constant and first-order processes

Because the system loses its memory of how it entered state i on a time scale
that is short compared to the time it takes to escape, as it wanders around
vibrationally in the state it will similarly lose its memory repeatedly about
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just where it has wandered before. Thus, during each short increment of time,
it has the same probability of finding an escape path as it had in the previous
increment of time. This gives rise to a first-order process with exponential
decay statistics (i.e., analagous to nuclear decay). The probability the system
has not yet escaped from state i is given by

psurvival(t) = exp( − ktott), (1)

where ktot is the total escape rate for escape from the state. We are particu-
larly interested in the the probability distribution function p(t) for the time of
first escape from the state, which we can obtain from this survival probability
function. The integral of p(t) to some time t′ gives the probability that the
system has escaped by time t′, which must equate to 1 − psurvival(t′). Thus,
taking the negative of the time derivative of psurvival gives the probablity
distribution function for the time of first escape,

p(t) = ktotexp( − ktott). (2)

We will use this first-passage-time distribution in the KMC procedure. The
average time for escape τ is just the first moment of this distribution,

τ =
∫ ∞

0

t p(t)dt =
1

ktot
. (3)

Because escape can occur along any of a number of pathways, we can make
the same statement as above about each of these pathways – the system has
a fixed probability per unit time of finding it. Each of these pathways thus
has its own rate constant kij , and the total escape rate must be the sum of
these rates:

ktot =
∑

j

kij . (4)

Moreover, for each pathway there is again an exponential first-escape time
distribution,

pij(t) = kijexp( − kijt), (5)

although only one event can be the first to happen. For more discussion on the
theory of rate processes in the context of stochastic simulations, see [24, 25].

We are now almost ready to present the KMC algorithm. Not surprisingly,
given the above equations, we will need to be able to generate exponentially
distributed random numbers, which we quickly describe.

4.1 Drawing an exponentially distributed random number

Generating an exponentially distributed random number, i.e., a time tdraw

drawn from the distribution p(t) = k exp( − kt), is straightforward. We first
draw a random number r on the interval (0,1), and then form



6 Arthur F. Voter

tdraw = −(1/k)ln(r). (6)

A time drawn in this way is an appropriate realization for the time of
first escape for a first-order process with rate constant k. Note that the usual
definition of the uniform deviate r is either 0 < r < 1 or 0 < r ≤ 1; a random
number generator implemented for either of these ranges will give indistin-
guishable results in practice. However, some random number generators also
include r = 0 in the bottom of the range, which is problematic (causing an
ill-defined ln(0) operation), so zero values for r must be avoided.

5 The KMC procedure

Having laid the conceptual foundation, it is now straightforward to design
a stochastic algorithm that will propagate the system from state to state
correctly. For now, we are assuming all the rate constants are known for each
state; in later sections we will discuss how they are calculated and tabulated.

Before discussing the procedure usually used by KMC practitioners, it is
perhaps instructive to first present a more transparent approach, one that
is less efficient, though perfectly valid. Our system is currently in state i,
and we have a set of pathways and associated rate constants {kij}. For each
of these pathways, we know the probability distribution for the first escape
time is given by Eq. 5. Using the procedure in Sect. 4.1, we can draw an
exponentially distributed time tj from that distribution for each pathway j.
Of course, the actual escape can only take place along one of these pathways,
so we find the pathway jmin which has the lowest value of tj , discard the
drawn time for all the other pathways, and advance our overall system clock
by tjmin. We then move the system to state jmin, and begin again from this
new state. That is all there is to it. This is less than ideally efficient because
we are drawing a random number for each possible escape path, whereas it
will turn out that we can advance the system to the next state with just two
random numbers.

We now describe the KMC algorithm that is in common use. The pathway
selection procedure is indicated schematically in Fig. 2a. We imagine that for
each of the M escape pathways we have an object with a length equal to
the rate constant kij for that pathway. We put these objects end to end,
giving a total length ktot. We then choose a single random position along
the length of this stack of objects. This random position will “touch” one of
the objects, and this is the pathway that we choose for the system to follow.
This procedure gives a probability of choosing a particular pathway that is
proportional to the rate constant for that pathway, as it should. To advance
the clock, we draw a random time from the exponential distribution for the
rate constant ktot (see Sect. 4.1 ). Note that the time advance has nothing to
do with which event is chosen. The time to escape depends only on the total
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Fig. 2. Schematic illustration of the procedure for picking the reaction pathway to
advance the system to the next state in the standard KMC algorithm. (a) Objects
(boxes for this illustration), each with a length proportional to the rate constant
for its pathway, are placed end to end. A random number r on (0,1), multiplied by
ktot, points to one box with the correct probability. (b) In a computer code, this is
achieved by comparing rktot to elements in an array of partial sums.

escape rate. Once the system is in the new state, the list of pathways and
rates is updated (more on this below), and the procedure is repeated.

In a computer implementation of this procedure, we make an array of
partial sums. Let array element s(j) represents the length of all the objects
up to and including object j,

s(j) =
j∑
q

kiq, (7)

as shown in Fig. 2b. One then draws a random number r, distributed on
(0,1), multiplies it by ktot, and steps through the array s, stopping at the
first element for which s(j) > rktot. This is the selected pathway.

This rejection-free “residence-time” procedure is often referred to as the
BKL algorithm (or the “n-fold way” algorithm), due to the 1975 paper by
Bortz, Kalos and Lebowitz [18], in which it was proposed for Monte Carlo
simulation of Ising spin systems. However, the idea goes back further. For
example, rejection-free KMC algorithms were used by others [8, 9, 10] earlier
to study surface adsorption and dynamics, and the residence-time algorithm
is described in the 1965 textbook by Cox and Miller [26].
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6 Determining the rates

Assuming we know about the possible pathways, we can use transition state
theory (TST) [27, 28, 29], to compute the rate constant for each pathway.
Although TST is approximate, it tends to be a very good approximation for
solid-state diffusive events. Moreover, if desired, the rate computed from TST
can be corrected for recrossing effects to give the exact rate. By underpinning
the KMC in this way, using high-quality TST rates that can be extended to
exact rates if desired, the state-to-state dynamics of the KMC simulations
can, in principle, be made as accurate as real molecular dynamics on the
underlying potential. This concept was first proposed in [17].

Fig. 3. Illustration of the transition state theory rate constant. The unimolecular
rate constant for escape from state i to state j, kij , is given by the equilibrium
outgoing flux through the dividing surface separating the states.

6.1 Transition state theory

Transition state theory (TST), first proposed in 1915 [27], offers a concep-
tually straightforward approximation to a rate constant. The rate constant
for escape from state i to state j is taken to be the equilibrium flux through
a dividing surface separating the two states, as indicated in Fig. 3. We can
imagine having a large number of two-state systems, each allowed to evolve
long enough that many transitions between these states have occurred, so
that they represent an equilibrium ensemble. Then, looking in detail at each
of the trajectories in this ensemble, if we count the number of forward cross-
ings of the dividing surface per unit time, and divide this by the number of
trajectories, on average, that are in state i at any time, we obtain the TST
rate constant, kTST

ij . The beauty of TST is that, because it is an equilibrium
property of the system, we can also calculate kTST

ij without ever looking at dy-
namical trajectories. For a thermal ensemble (the only kind we are considering
in this chapter), kTST

ij is simply proportional to the Boltzmann probability
of being at the dividing surface relative to the probability of being anywhere
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in state i. Specifically, for a one-dimensional system with a dividing surface
at x = 0,

kTST
ij = 〈|dx/dt| δ(x)〉i , (8)

where the angular brackets indicate a canonical ensemble average over the
position coordinate x and momentum p, the subscript i indicates evaluation
over the phase space belonging to state i (x ≤ 0 in this case), and δ(x) is the
Dirac delta function. Extension to many dimensions is straightforward [30],
but the point is that once the dividing surface has been specified, kTST

ij can
be evaluated using, for example, Metropolis Monte Carlo methods [30, 31].

The implicit assumption in TST is that successive crossings of the divid-
ing surface are uncorrelated; i.e., each forward crossing of the dividing surface
corresponds to a full reactive event that takes the system from residing in
state i to residing in state j. However, in reality, there is the possibility that
the trajectory may recross the dividing surface one or more times before ei-
ther falling into state j or falling back into state i. If this happens, the TST
rate constant overestimates the exact rate, because some reactive events use
up more than a single outgoing crossing. As stated above, the exact rate can
be recovered using a dynamical corrections formalism [32, 33, 34], in which
trajectories are initiated at the dividing surface and integrated for a short
time to allow the recrossing events to occur. While the best choice of divid-
ing surface is the one that minimizes the equilibrium flux passing through
it (the best surface usually follows the ridgetop), this dynamical corrections
algorithm recovers the exact rate constant even for a poor choice of divid-
ing surface. This dynamical corrections formalism can also be extended to
correctly account for the possibility of multiple-jump events, in which case
there can be nonzero rate constants kij between states i and j that are not
adjacent in configuration space [35].

In principle, then, classically exact rates can be computed for each of the
pathways in the system. In practice, however, this is never done, in part be-
cause the TST approximation is fairly good for solid-state diffusive processes.
In fact, most KMC studies are performed using a further approximation to
TST, which we describe next.

6.2 Harmonic transition state theory

The harmonic approximation to TST, and further simplifications to it, are
often used to calculate KMC rate constants. Harmonic TST (HTST) is of-
ten referred to as Vineyard theory [36], although equivalent or very similar
expressions were derived earlier by others [37]. In HTST, we require that
the transition pathway is characterized by a saddle point on the potential
energy surface (e.g., the dots in Fig. 1). One assumes that the potential en-
ergy near the basin minimum is well described (out to displacements sampled
thermally) with a second-order energy expansion – i.e., that the vibrational
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modes are harmonic – and that the same is true for the modes perpendicular
to the reaction coordinate at the saddle point. The dividing surface is taken
to be the saddle plane (the hyperplane perpendicular to the reaction coor-
dinate at the saddle point), and evaluation of the ensemble average in Eq. 8
for a system with N moving atoms gives the simple form

kHTST =

3N∏
i

νmin
i

3N−1∏
i

νsad
i

exp(−Estatic/kBT ). (9)

Here Estatic is the static barrier height (energy difference between the saddle
point and the minimum) and kB is the Boltzmann constant. In the preexpo-
nential factor (or prefactor), {νmin

i } are the 3N normal mode frequencies at
the minimum and {νsad

i } are the 3N −1 nonimaginary normal mode frequen-
cies at the saddle [38]. The computation of kHTST thus requires information
only about the minimum and the saddle point for a given pathway. The HTST
rate tends to be a very good approximation to the exact rate (e.g., within
10-20%) up to at least half the melting point for diffusion events in most solid
materials (e.g., see [39, 40]), although there can be exceptions [41]. Further,
since prefactors are often in the range of 1012 s−1 - 1013 s−1 (though they
can be higher; e.g., see Fig. 4 in [42]), a common approximation is to choose
a fixed value in this range to save the computational work of computing the
normal modes for every saddle point.

The form of the Vineyard approximation merits further comment. Note
that the only temperature dependence is in the exponential, and depends
only on the static (i.e., T=0) barrier height [43]. No correction is needed, say,
to account for the extra potential energy that the system has as it passes
over the saddle region at a finite temperature. This, and all the entropy
effects, cancel out in the integration over the normal modes, leaving the
simple form of Eq. (9). Also note that Planck’s constant h does not appear
in Eq. (9). The kT/h preexponential sometimes found in TST expressions is
an artifact of incomplete evaluation of the partition functions involved, or a
dubious approximation made along the way. TST is a classical theory, so h
cannot remain when the integrals are all evaluated properly. Confusion about
this expression, which introduces the wrong temperature dependence and an
inappropriate physical constant, has persisted because kBT/h at T=300K
(6.2 × 1012 Hz) is coincidentally similar to a typical preexponential factor.

7 The lattice assumption and the rate catalog

Typically in KMC simulations, the atoms in the system are mapped onto a
lattice. An event may move one atom or many atoms, perhaps in a compli-
cated way, but in the final state, each atom will again map onto a unique
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lattice point. Note that if, for example, harmonic TST is used to compute the
rates, it requires that the system be relaxed to find the energy and frequen-
cies at the minimum. After relaxation, the atoms will in general no longer be
positioned on the lattice points, especially for atoms near defects. However, if
each atom is much closer to one lattice point than any other lattice point, and
if the mapping of the atoms onto the lattice points does not change during
the relaxation, then it is safe to map the system onto a lattice in this way to
simplify the KMC and the generation of the rate constants.

Fig. 4. Schematic illustration of the rate catalog concept for the diffusional jump
of a vacancy. Atoms in the lattice sites labelled 1-10 can affect the rate constant
significantly, so TST rate constants are computed for all possible occupations (dif-
fering atom types or vacancies) of these sites. This list of rates makes up a rate
catalog, which can be accessed during the KMC simulation to determine the rate
constant for the jump of a vacancy in any direction for any environment.

Lattice mapping also makes it easy to exploit locality in determining rates.
We assume that only the atoms near a defect affect the rate constant for any
change or migration of that defect. An example of this is shown in Fig. 4 for
a pathway schematically corresponding to the jump of a lattice vacancy. For
each of the local environments of the jumping atom (i.e., in which each of
the numbered sites in Fig. 4 is either vacant or filled with one atom type or
another), we can compute a TST rate constant [17]. The number of possible
rates, ignoring symmetry, is

nrate = (ntype + 1)nsite , (10)

where nsite is the number of sites explicitly considered (nsite = 10 in Fig. 4)
and ntype is the number of possible atom types that can be at each of those
sites. Equation 10 results from the fact that each site, independently, may
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either be vacant, or have an atom of one of the ntype types. (For the purposes
of this formal counting, we are overlooking the fact that some of the pathways
involving multiple vacancies in the environment may be ill defined if the
adatom has no neighbors.)

The set of rates computed in this way comprise a “rate catalog” [17],
which we can then use to look up the rates we need for every state the sys-
tem visits. By making the local environment larger, we can make the rates
in it more accurate, and in principle we can make the environment as large
as we need to achieve the accuracy we desire. In practice, however, the fact
that the number of rates that will have to be computed grows as a strong
power law in nsite means that we may settle for less than ideal accuracy. For
example, for vacancy moves in an fcc metal, including just nearest-neighbor
sites of the jumping atom, nsite=18 and ntype=1, giving 218 = 262,144 rates
to be computed (many equivalent by symmetry). For a classical interatomic
potential, this is feasible, using an automated procedure in which a nudged
elastic band calculation [44, 45] or some other saddle-finding algorithm (e.g.,
Newton-Raphson) is applied to each configuration. However, just increasing
this to include second nearest neighbors (228 = 2.7x108 rates, ignoring sym-
metry) or to consider a binary alloy (318 = 3.8x108 rates, ignoring symmetry)
increases the computational work enormously.

This work can be reduced somewhat by splitting the neighborhood into
two sets of sites [46], one set of sites that most influence the active atom in
the initial state (e.g., sites 1,2,3,5,7,8, and 9 in Fig. 4) and another set of sites
that most influence the active atom at the saddle point (e.g., sites 2,3,8, and
9 in Fig. 4). Two catalogs are then generated, one for the minima and one
for the saddle points. Each catalog entry gives the energy required to remove
the active atom (the one involved in the jump) from the system. Subtracting
these special vacancy formation energies for a given minimum-saddle pair
gives the energy barrier for that process.

Another way to reduce the work is to create the rate catalog as the KMC
simulation proceeds, so that rate constants are computed only for those en-
vironments encountered during the KMC.

While achieving convergence with respect to the size of the local envi-
ronment is formally appealing, we will see in Sect. 9 that it is usually more
important to make sure that all types of pathway are considered, as missing
pathways often cause larger errors in the final KMC dynamics.

Finally, we note that the locality imposed by this rate-catalog approach
has the benefit that in the residence-time procedure described in Sect. 5,
updating the list of rates after a move has been accepted requires only fixed
amount of work, rather than work scaling as the number of atoms in the
entire system.
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7.1 Assuming additive interactions

As discussed above (see Eq. 10), computing every rate necessary to fill the
rate catalog may be undesirably expensive if nsite and/or ntype are large, or
if a computationally expensive electronic structure calculation is employed to
describe the system. Within the HTST framework, where the rate is specified
by a barrier height and a preexponential factor, an easy simplification is to
assume that the barrier height can be approximated by additive interactions.
For example, beginning from the example shown in Fig. 4, the neighboring
atoms can be categorized as class m1 (nearest neighbors to the jumping atom
when the system is at the minimum, sites 2, 5 and 8), class m2 (second nearest
neighbors to the jumping atom when the system is at the minimum, sites 1,
3, 7 and 9), class s1 (first neighbors to the jumping atom when the system is
at the saddle point, sites 2, 3, 8, and 9), and so forth. This example is shown
in Fig. 5. The barrier energy is then approximated by

Estatic = Esad − Emin, (11)

where the energy of the minimum (Emin) and the energy of the saddle (Esad)
are given by

Emin = E0
min + nm1Em1 + nm2Em2 (12)

Esad = E0
sad + ns1Es2 + ns2Es2. (13)

Here, nm1 is the number of atoms in m1 positions, and similarly for nm2,
ns1, and ns2. In this way, the rate catalog is replaced by a small number
of additive interaction energies. The energies E0

minEm1, Em2, E
0
sad, Es1, and

Es2 can be simply specified ad hoc or adjusted to give simulation results that
match experiment (this is the way almost all KMC simulations were done
until the mid 1980’s, and many still are), or they can be obtained from a best
fit to accurately calculated rate constants (e.g., see [47]). For the prefactor,
1012 − 1013s−1 is a good estimate for many systems.

7.2 Obeying detailed balance

In any chemical system, we can make general statements about the behavior
of the system when it is in equilibrium that are useful for understanding the
dynamical evolution when the system is out of equilibrium (as it typically is).
Formally, exact equilibrium properties can be obtained by gathering statistics
on a very large number of systems, each of which has run for an extremely
long time before the measurements are made. At equilibrium, the fractional
population of state i, χi, is proportional to exp(−Gi/kBT ), where Gi is the
free energy of state i. For every pair of connected states i and j, the number
of transitions per unit time (on average) from i to j must equal the number
of transitions per unit time from j to i. Because the number of escapes per



14 Arthur F. Voter

Fig. 5. Schematic illustration of the additive rate catalog for the diffusional jump
of a vacancy. Sites are labeled by class for (a) the minimum and (b) the saddle
point.

time from i to j is proportional to the population of state i times the rate
constant for escape from i to j, we have

χikij = χjkji, (14)

and the system is said to “obey detailed balance.” Because the equilibrium
populations and the rate constants are constants for the system, this de-
tailed balance equation, which must hold even when the system is not in
equilibrium, places requirements on the rate constants. If a rate catalog is
constructed that violates detailed balance, then the dynamical evolution will
not correspond to a physical system. This ill-advised situation can occur, for
example, if a rate constant is set to zero, but the reverse rate is not, as might
happen in a sensitivity analysis or a model study. It can also arise if there is
an asymmetry in the procedure for calculating the rates (e.g., in the way that
saddle points are found) that gives forward and reverse rates for a connected
pair of states that are not compatible.

8 Computational scaling with system size

For a system with M escape pathways, the residence-time algorithm described
in Sect. 5, in its simplest implementation, would require searching through a
list of M rates to find the pathway that is selected by the random number. The
computational work to choose each KMC step would thus scale as M . Over
the years, papers [48, 49, 50] have appeared discussing how to implement the
residence-time procedure with improved efficiency. Blue, Beichl and Sullivan
[49] pointed out that by subdividing the list of rates into hierarchical sublists,
the work can be reduced to that of searching a binary tree, scaling as log(M).
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Recently, Schulze [50] demonstrated that for a system in which there are
equivalent rates that can be grouped (e.g., the rate for a vacancy hop in one
part of the system is equivalent to the rate for a vacancy hop in another part
of the system), the work can be reduced further, becoming independent of
M .

After the pathway is selected and the system is moved to the new state,
the rate list must be updated. In general, for this step the locality of the
rate constants can be exploited, as discussed in Sect. 7, so that only a fixed
amount of work is required, independent of M .

The overall computational scaling of KMC also depends on how far the
system advances in time with each KMC step. In general, for a system with
N atoms, the number of pathways M will be proportional to the number of
atoms N [51]. If we increase the size of a system in a self-similar way, e.g.,
doubling N by placing two equivalent systems side by side, then the total
escape rate ktot will be proportional to N (see Eq. 4). Since the average time
the system advances is inversely proportional to ktot (see Eq. 3), this means
that the overall work required to propagate a system of N atoms forward for
a certain amount of time is proportional to N (within the Schulze assumption
that there is a fixed number of unique rate constants) or at worst N logN .

9 Surprises – the real reason KMC is not exact

As claimed in the introduction, KMC can, in principle, give the exact state-
to-state dynamics for a system. This assumes that a complete rate catalog
has been generated, containing an accurate rate constant for every escape
pathway for every state that will be encountered in the dynamics. We have
discussed above the fact that the TST rate is not exact (unless augmented
with dynamical corrections) and the difficulty in fully converging the environ-
ment size (see Eq. 10). However, for a typical system, neither of these effects
are the major limitation in the accuracy of the KMC dynamics. Rather, it
is the fact that the real dynamical evolution of a system will often surprise
us with unexpected and complex reaction pathways. Because these pathways
(before we have seen them) are outside our intuition, they will typically not
be included in the rate catalog, and hence cannot occur during the KMC
simulation.

The field of surface diffusion provides a classic example of such a surpris-
ing pathway. Until 15 years ago, diffusion of an adatom on the simple fcc(100)
surface was assumed to occur by the adatom hopping from one four-fold site
to the next. Using density functional theory calculations, Feibelman discov-
ered in 1990 that the primary diffusion pathway on Al(100) actually involves
the exchange event shown in Fig. 6, in which the adatom plunges into the sur-
face, pushing a substrate atom up into the second nearest neighbor binding
site [52]. In field-ion microscope experiments, this exchange mechanism was
shown to be the dominant pathway for Pt/Pt(100) [53] and Ir/Ir(100) [54].
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Fig. 6. Exchange mechanism for adatom on fcc(100) surface. (a) initial state;
(b) saddle point; (c) final state. This mechanism, unknown until 1990 [52], is the
dominant diffusion pathway for some fcc metals, including Al, Pt, and Ir.

For Pt/Pt(100), the barrier for the hop mechanism is roughly 0.5 eV higher
than for the exchange mechanism. Thus, a KMC simulation of Pt adatoms on
a Pt(100) surface, using a rate catalog built assuming hop events only (which
was standard practice for KMC on the fcc(100) surface until recently), would
give a seriously flawed description of the diffusion dynamics.

More recently, there have been many examples of unexpected surface and
bulk diffusion mechanisms [55, 56, 57, 58, 59]. In some cases, the discovered
mechanisms are so complex that it would not be easy to incorporate them
into a KMC rate catalog, even afte the existence of the pathway is known.
This issue was the primary motivation for the development of the accelerated
molecular dynamics methods [60] described in the next chapter.

10 Simulation time achievable with KMC

The total simulation time that can be achieved in a KMC simulation is
strongly system dependent. Each KMC step advances the system by a time
(on average) no greater than the inverse of the fastest rate for escape from the
current state. This rate depends exponentially on the barrier height divided
by the temperature, and the size of the lowest barrier can change, perhaps
dramatically, as the system evolves. However, to get some sense of what is
possible, we observe that on present-day computers, one can take roughly
1010 steps in a few hours of computer time (the exact value, of course, de-
pends on the type and size of the system). If we assume that for every state
there is one fast escape pathway with a fixed lowest barrier Ea and a prefactor
of 1013, then we can achieve a simulation time of 1010/(1013exp(−Ea/kBT )).
For Ea = 0.5 eV, this gives a total simulation time of 2.5x105 s at T=300K,
16 s at T=600K and 0.33 s at T=1000K. For a very low barrier, times are
even shorter but the temperature dependence is much weaker. For exam-
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ple, Ea = 0.1 eV gives 50 ms at T=300K, 10 ms at T=600K, and 3 ms at
T=1000K. These times are all significantly longer than one can achieve with
direct molecular dynamics simulation (typically between 1 ns and 1 µs).

11 The low-barrier problem

It is interesting to note how important the lowest barrier is. A persistent low
barrier can significantly decrease the total accessible simulation time, and
many systems exhibit persistent low barriers. For example, in metallic surface
diffusion, adatoms that diffuse along the edge of a two-dimensional cluster
or a step edge usually do so with a much lower barrier than for diffusion
on an open terrace [17]. In bulk fcc materials, interstitials typically diffuse
with very low barriers in the range of 0.1 eV or less. In glassy materials, low-
barriers abound. This is a common and long-standing problem with KMC
simulations.

One approximate approach to the problem is to raise the lowest barriers
artificially to slow down the fastest rates. This will give accurate dynamics
if the fast processes are reasonably well equilibrated under the conditions of
interest, and if they are still able to reach equilibration when they are slowed
down. In general, though, it may be hard to know for sure if this is corrupting
the dynamics.

Often the structure of the underlying potential energy surface is such
that the system repeatedly visits a subset of states. Among the states in this
superbasin, an equilibrium may be achieved on a much shorter time scale than
the time it takes the system to escape from the superbasin. In this situation,
if all the substates are known and a list of all processes that take the system
out of the superbasin can be enumerated, then one of these processes can be
selected with an appropriate Boltzmann probability. Two difficulties typically
arise: 1) efficiently identifying and recognizing all the substates, the number
of which may be very large; and 2) being sure the system is truly equilibrated
in the superbasin.

Regarding the first problem, Mason et al [61] have recently pointed out
that a hashing procedure based on the Zobrist key [62], developed for rec-
ognizing previously stored configurations in chess, can be used to efficiently
identify revisited states in a KMC simulation. In lattice-based KMC, as in
chess, the number of possible states is typically astronomical, vastly exceeding
the number of indices that can be stored in computer memory. The Zobrist
approach maps a lattice-based configuration onto a non-unique index (key)
that has a low probability of colliding with other configurations. Mason et
al showed that retrieving previously visited states based on their Zobrist key
saved substantial time for a KMC simulation in which rates were calculated
from scratch for each new configuration. This type of indexing could also be
powerful for enumerating and recognizing states in a superbasin.
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Novotny has presented a general method [63] that circumvents the second
problem (that of establishing equilibration in the superbasin). The imple-
mentation requires setting up and diagonalizing a transition matrix over the
revisited states. While this probably becomes too costly for superbasins with
large numbers of substates, the generality of the method is very appealing. It
yields the time of the first transition out of the set of revisited states and the
state the system goes to, while making no requirement of a local equilibrium
or even that the complete set of states in the superbasin be known.

Finally, we note that the low-barrier problem is also an issue for the
accelerated molecular dynamics methods discussed in the next chapter, as
well as for the on-the-fly KMC discussed in Section 13.

12 Object kinetic Monte Carlo

A higher level of simulation, which is still in the KMC class, can be created by
constructing state definitions and appropriate rate constants for multi-atom
entities such as interstitial clusters, vacancy clusters, etc. This type of simula-
tion is becoming more common in radiation damage annealing studies. As in
basic atomic-level KMC, this object KMC approach is usually performed on a
lattice using the residence time algorithm, perhaps augmented by additional
rules. By treating the diffusive motion of a cluster, for example, as proceed-
ing by simple KMC steps of the center of mass, rather than as a cumulative
result of many individual basin-to-basin moves that move atoms around in
complex (and often unproductive) ways, object KMC can reach much longer
time and length scales than pure atom-based KMC. A good example of this
approach, with references to earlier work, can be found in [64].

The tradeoff in this approach, however, is that important pathways may
go missing from the rate catalog as atomistic details are eliminated. For exam-
ple, the diffusion rate as a function of cluster size must be specifed directly,
as well as rules and rates for coalescense or annihilation two clusters that
encounter one another. When the real dynamics are explored, these depen-
dencies sometimes turn out to be surprisingly complicated. For example, in
the case of intersitial clusters in MgO, the diffusion constants are strongly
non-monotonic with cluster size, and, worse, the cluster resulting from coales-
cence of two smaller clusters can sometimes form in a long-lived metastable
state with dramatically different diffusion properties [59]. So, while object
KMC is an effective way to reach even greater time and size scales than stan-
dard KMC, it is perhaps even more important to keep in mind the dangers
of missing pathways.
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13 On-the-fly Kinetic Monte Carlo

As discussed above, while ideally KMC simulations can be carried out in a
way that is faithful to the real dynamics for the underlying interatomic po-
tential, this is virtually never the case in real applications due to the fact
that reaction pathways are invariably missing from the rate catalog. In part,
this deficiency arises from the fact that keeping the system on lattice pre-
cludes certain types of diffusive events, but the far more dominant reason is
simply that we usually make up rate catalogs based on our intuition about
how the system will behave, and the real dynamics is almost always more
complicated. This situation can be improved by gaining more experience on
the system to be simulated, e.g., by observing the types of events that occur
during extensive direct MD simulations. However, even this approach is usu-
ally inadequate for finding all the reactive events that could occur during the
evolution of the system.

It is this situation that has motivated research in recent years to develop
alternative methods that can reach long time scales while maintaining (or
coming close to) the accuracy of direct MD. The next chapter in this book
describes one powerful approach to this problem, accelerated molecular dy-
namics, in which the classical trajectory is retained (rather than collapsing
the description to a set of states, as in KMC), and this classical trajectory
is coaxed into finding each escape path more quickly. We finish the present
chapter with a brief description of another approach, one which retains the
flavor of KMC.

Recently, Henkelman and Jónsson [67] have proposed a variation on the
KMC method, in which one builds a rate catalog on the fly for each state.
The key to this approach is having an efficient way to search for saddle
points that are connected to the current state of the system. For this, they
use the “dimer” method [58]. Given a random starting position within the
energy basin, the dimer algorithm climbs uphill along the lowest eigenvector
of the Hessian matrix, reaching the saddle point at the top. Because it only
requires first derivatives of the potential [68], it is computationally efficient.
In principle, if all the bounding saddle points can be found (and hence all the
pathways for escape from the state), the rate for each of these pathways can
be supplied to the KMC procedure described in Section 5, propagating the
system in a dynamically correct way to the next state, where the procedure
is begun again. In practice, it is hard (probably impossible) to demonstrate
that all saddles have been found, especially considering that the number of
saddle points bounding a state grows exponentially with the dimensionality
of the system. However, with a large number of randomly initiated searches,
most of the low-lying barriers can be found, and this approach looks very
promising [69]. Examining the pathways that these systems follow from state
to state, often involving complicated multiple-atom moves, it is immediately
obvious that the quality of the predicted dynamical evolution is substantially
better than one could hope to obtain with pre-cataloged KMC. This approach
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can be parallelized efficiently, as each dimer search can be performed on a
separate processor. Also, for large systems, each dimer search can be localized
to a subset of the system (if appropriate). On the other hand, this type of
on-the-fly KMC is substantially more expensive than standard KMC, so the
user must decide whether the increased quality is worth the cost.

14 Conclusions

Kinetic Monte Carlo is a very powerful and general method. Given a set of
rate constants connecting states of a system, KMC offers a way to propagate
dynamically correct trajectories through the state space. The type of system,
as well as the definition of a state, is fairly arbitrary, provided it is appropri-
ate to assume that the system will make first-order transitions among these
states. In this chapter, we have focused on atomistic systems, due to their
relevance to radiation damage problems, which are the subject of this book.
In this case, the states correspond to basins in the potential energy surface.

We have emphasized that, if the rate catalog is constructed properly, the
easily implemented KMC dynamics can give exact state-to-state evolution of
the system, in the sense that it will be statistically indistinguishable from
a long molecular dynamics simulation. We have also pointed out, however,
that this ideal is virtually never realizable, due primarily to the fact that
there are usually reaction pathways in the system that we don’t expect in
advance. Thus, if the goal of a KMC study is to obtain accurate, predictive
dynamics, it is advisable to perform companion investigations of the system
using molecular dynamics, on-the-fly kinetic Monte Carlo (see Section 13),
or accelerated molecular dynamics (see next chapter).

Despite these limitations, however, KMC remains the most powerful ap-
proach available for making dynamical predictions at the meso scale without
resorting to more dubious model assumptions. It can also be used to provide
input to and/or verification for higher-level treatments such as rate theory
models or finite-element simulations. Moreover, even in situations where a
more accurate simulation would be feasible (e.g., using accelerated molecular
dynamics or on-the-fly kinetic Monte Carlo), the extreme efficiency of KMC
makes it ideal for rapid scans over different conditions, for example, and for
model studies.
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