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Abstract 
 

In the maintenance activities of the surveillance test for the standby system in 

nuclear power plants, the objective usually involves more than one factor regarding, low 

levels of system unavailability and low costs in maintenance activities. In order to 

optimize these conflicting objectives, the multi-objective optimization is usually applied. 

Nevertheless, maintenance activities typically involve significant uncertainties such as 

those involving downtime and costs of maintenance. Therefore, some regions in the 

Pareto-optimal solutions may have the properties that are inappropriate due to the large 

scatter of the solutions. Moreover, in some regions, there are high sensitivities of a 

variation in one objective value to a variation in the other. Thus, attention should 

increasingly be focused on a robust solution. Unfortunately, the conventional method 

for decision-making processes has not sufficiently considered the robustness. Therefore, 

a methodology for selecting an appropriate solution with acceptable robustness is 

required. 

In this research, new methodologies for assisting in decision-making for a 

multi-objective optimization framework based on robustness are presented (according to 

the user’s requirement). The robustness considered in this research includes the 

sensitivity of a variation in one objective value to a variation in the other objective 

function value, and the uncertainty intrinsic to each parameter. 

In the viewpoint of sensitivity, a new index of Sensitivity index, (SI) is proposed to 

determine the lowest sensitivity of the variation in one objective value to the variation 

in the other of the Pareto-optimal solutions. Moreover, in order to evaluate the effect 

due to the uncertainty of the parameters, we make use of the Monte Carlo method to 

obtain families of the Pareto optimal solutions. Then, efficient methodology that is 
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capable of identifying the most promising solution from a multi-objective optimization 

framework under uncertainty is also proposed. The uncertainty of each choice of the 

Pareto-optimal solutions is evaluated using the uncertainty index, UI. However, the 

promising solution with the lowest deviation is not necessarily the solution to give the 

best sensitivity, or vice versa. Therefore, to achieve a good compromise between 

sensitivity and uncertainty, the decision index, DI is then proposed.  

Furthermore, since the importance parameter for the surveillance test is the 

surveillance test interval, therefore the management of the surveillance test interval 

groups is also significant for improving the efficient of the surveillance test. The 

risk-based inservice testing provides the prioritization efforts of maintenance activities 

for the rational safety management. Thus, the risk-based inservice testing can be applied 

for managing the surveillance test interval groups. However, no work has been reported 

on the methodology of updating the multi-objective optimization results by risk-based 

inservice testing. 

This paper also proposes a new methodology to determine the robust surveillance test 

with the most optimal surveillance test interval based on risk based inservice testing. In 

the proposed methodology, the application of a multi-objective optimization to 

risk-based inservice testing is performed to determine the most optimal test interval 

based on risk consideration. And, in order to obtain the robust solution, the proposed 

decision-making for the multi-objective optimization in the viewpoint of robustness is 

applied. 

The proposed indexes and methodology are examined using a standby system of a 

simplified high-pressure injection system (HPIS) in a nuclear power plant’s pressurized 

water reactor (PWR) as the application. It is confirmed that the proposed methodology 

gives the satisfactory results in the viewpoint of risk and robustness. 
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Chapter 1 
 

Introduction 
____________________________________________________________________ 
 
1.1 Backgrounds and motivations 

The safety systems in the nuclear power plant are usually standby systems. For 

maintenance of the safety systems, the periodically test of the surveillance test [22,41,58] is 

performed to discover hidden failures that might occur in standby functions and then to 

assure that the component is still promptly to operate when the system is needed. The 

surveillance test is issued by the U.S. Nuclear Regulatory Commission (NRC)[51] 

through regulations published in Title 10 of the Code of Federal Regulations, Energy 

Part 50 (10CFR50) [56]. The probability that the component has failed at any point in 

time between surveillance test increases until the component is reset to zero by each 

successful test. The surveillance test is important because if the standby system does not 

function properly when its design function is required, severe damage to the plant may 

occur.  

 

Because the surveillance test is important, the efficient scheme for improving the 

surveillance test in the maintenance activities is then required. The optimization is one 

of the techniques for improving surveillance test. However, the concerned essential 

quantities for the surveillance test include several factors such as the unavailability, the 

surveillance test interval (STI), and the maintenance costs. The unavailability [15] is the 

probability that a system or component is not performing its required function when it is 
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needed. Therefore, the low level of unavailability is required in the maintenance 

activities. On the other hand, the reduction of the maintenance costs is also required.  

 

So far, single-objective optimization is wildly used in probabilistic risk analysis 

(PRA) for nuclear power plants [4,14,24,26,50]; unavailability is considered as the objective 

and cost function is considered an implicit constraint, or vice versa. Nevertheless, an 

obvious trade-off (conflicting scenarios) exists among these purposes. Clearly, it is 

difficult to find an optimal solution in maintenance activities with single-objective 

optimization.  

 

Therefore, a multi-objective optimization [16,23,27] framework is required to solve such 

trade-offs problems. A set of non-dominated optimal solutions is selected from feasible 

region and forms a so-called the Pareto-optimal solutions [27]. Moreover, in order to 

optimize of surveillance test, there are the multi-related parameters [48] as the decision 

variables. And the problem also consists of the non-linear objective functions based on 

risk (or unavailability) and the maintenance cost of the standby system. Genetic 

algorithm (GA) [38,54] is efficient for solving such problems and the multi-objective 

optimal problems using genetic algorithm is appropriate to optimize the surveillance test. 

Nowadays, the multi-objective optimization is applied to optimal treatment in various 

fields, which are summarized as shown in Table1.1. 

 

However, most of these researches have mainly focused only on obtaining the 

Pareto-optimal solutions, but have not paid attention to robustness of the decision 

making point for the Pareto-optimal solutions. Thus, one attention should increasingly 

be focused on a robust solution. In this research, the considered robustness includes the 
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sensitivity of a variation in one objective value to a variation in the other objective 

function value, and the uncertainty intrinsic to each parameter. Unfortunately, the 

conventional method [60,61] for selecting an appropriate alterative solution is not 

sufficient for the treatment of robustness of sensitivity and uncertainty. 

 

Table 1.1. Summary of examples of research on multi-objective optimization in 

various fields 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Furthermore, one of the important parameters for the surveillance test is the 

surveillance test interval. In the surveillance test, the system components have been 

grouped into different test strategies. All components in the same group are determined 

as the same surveillance test interval. Therefore, the management of the surveillance 

Field

composite aerospace 
structure[17]

First 
objective function

Stiffness Weight

Cost Weight

Cost Environmental effectDesign of plant 
process[12]
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Second
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Third
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-

-

-

-

-

composite aerospace 
structure[28]
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test interval groups is also significant for improving the maintenance activities. So, 

performing the multi-objective optimization without considering the appropriate 

surveillance test interval groups may not lead to the satisfactory results in the risk 

management point of view. In order to manage the most satisfactorily surveillance test 

interval groups in the viewpoint of risk, the optimization including prioritization of 

maintenance should be treated. 

 

The risk-based maintenance (RBM) [46,63] is the method that provides a maintenance 

activities program using risk as a basis for prioritizing and managing the efforts of the 

inspection and maintenance programs. Thus, the RBM can be used for managing the 

surveillance test interval groups. So far, many researches have shown that the RBM has 

been efficiently applied in maintenance [18,19,21,25,39] and there are several guidelines that 

are developed about risk-based maintenance [2,3,5-9]. For components in the standby 

system such as pumps and valves, RBM for testing is called risk-based inservice testing 

(RBT) [9,10,30,59], which is developed in the guidelines of the American societies of 

mechanical engineers (ASME). 

  

Nevertheless, no work has been report on applying the multi-objective optimization 

to the risk-based inservice testing, although both of these concepts are important. The 

multi-objective optimization is needed to solve the trade-offs problem and to assist in 

determining the robust solution. While the risk-based inservice testing is required to 

make the multi-objective optimization being most efficient based on risk. Therefore, a 

methodology for assisting in planning the most optimal surveillance test interval that 

makes the multi-objective optimization results being most optimized based on risk and 

robustness is required.  
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1.2 Objective 

The main objective of this research is to develop the methodologies for improving 

the surveillance test in the maintenance activities of a standby safety system in a nuclear 

power plant from the viewpoint of risk and robustness.  

 

In order to improve the surveillance test, the multi-objective is performed for 

solving the intrinsic trade-offs in the surveillance test. Then the following researches are 

proposed in order to achieve the main objective. 

 

1) Propose the new decision-makings for the multi-optimization solutions based 

on robustness (Chapter 3, 4).   

 

In order to achieve the robust surveillance test, the decision-makings for the 

multi-optimization solutions based on robustness are proposed. The robustness 

considered in this research includes the sensitivity of a variation in one objective value 

to a variation in the other objective function value, and the uncertainty intrinsic to each 

parameter. Therefore, the new decision-makings for the multi-optimization solutions 

based on robustness are proposed in the following point of views.  

 

- Propose the decision-makings for the multi-optimization solutions in the viewpoint of 

robustness of sensitivity. (Chapter 3) 

 

- Propose the decision-makings for the multi-optimization solutions in the viewpoint of 

robustness of uncertainty. (Chapter 4) 
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2) Propose the risk-based in-service testing policy using multi-objective 

optimization with robustness (Chapter 5).   

 

In order to achieve the robust surveillance test with the most optimal surveillance test 

interval based on risk, the risk-based in-service testing policy using multi-objective 

optimization with robustness is proposed.  

 

The new proposed methodology is based on risk-based maintenance theory for 

improving the prioritization in the surveillance test that makes the multi-objective 

optimization results being most optimized based on risk. The multi-objective 

optimization is performed in the proposed methodology for solving the trade-offs in the 

problem. And the proposed decision-makings for the multi-optimization solutions based 

on robustness is then determined to obtain the robustness surveillance test planning.  
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1.3 Outlines of research 

This thesis contains 6 chapters and the structure of these chapters is presented in 

Fig.1.1. Each chapter is summarized below. 

 

Chapter 1 shows the background and motivations of this research. Then, all of the 

problems are discussed and the objectives of this research are proposed. The outlines of 

this research are summarized in this chapter. 

 

Chapter 2 shows the overall basic theories that are used in this research such as, risk 

and probabilistic risk analysis in nuclear power plant, genetic algorithms and 

multi-objective optimization using genetic algorithms, the conventional method for 

decision-making in the Pareto-optimal solutions and risk-based maintenance. 

 

Chapter 3 proposes the new decision making for the Pareto-optimal solutions in the 

viewpoint of sensitivity and indicates the problem that may occur in the conventional 

method. In addition the case study for examining the efficiency of the proposed 

methodology in this research is presented. The formulation of unavailability and 

maintenance costs of the standby system are explained. Then, discussions and results 

and concluding remarked are explained. 

 

Chapter 4 proposes the decision making for the multi-objective optimization 

framework under uncertainty. Then, the combination of decision-making in the 

viewpoint of robustness of the solution is also considered together with the uncertainty. 

Finally, the discussions and conclusions of the results of the case study for the proposed 

index and methodology in this chapter are explained. 
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Chapter 6 Conclusions
Conclusions,  Suggestions for further work

Chapter 3
Decision making for 
the Pareto-optimal solutions 
in the viewpoint of sensitivity
Introduction, Problems, 
Proposed methodology and indexes, case study
Results and discussions, conclusions

Chapter 5
Risk-Based Inservice Testing 
Policy using a Multi-Objective 
Optimization with robustness
Introduction, Problems, 
Proposed methodology and indexes, 
Results and discussions, Conclusions

Chapter 1 Introduction
Backgrounds and motivations, Purposes, Outlines

Chapter 4
Decision making for 
the multi-objective optimization framework 
in the  viewpoint of uncertainty
Introduction, Problems, 
Proposed methodology and indexes, 
Results and discussions, Conclusions

Chapter 2  Basic theory

 

Chapter 5 proposes the risk-based in-service testing policy using multi-objective 

optimization with robustness in order to optimize the surveillance test interval groups 

that make the Pareto-optimal solution being most effective based on risk and having 

robustness. Discuss and conclude the result of the case study for the proposed 

methodology in this chapter. 

 

Chapter 6 shows the conclusions and the suggestion for the furthering researches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Structure of this research 
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Chapter 2 
 

Basic Theory 
____________________________________________________________________ 

 

This chapter will describe the overall basic theory that is used for development in 

this research.   

 

2.1 Probabilistic risk analysis (PRA) in nuclear power plant 

In October 1975, the U.S. Nuclear Regulatory Commission (NRC) [51] released the 

Reactor Safety Study, entitled as WASH-1400 [57] (also called the Rasmussen Report 

according to Professor Norman Rasmussen of MIT) evaluated the probability of a 

number of accident sequences that might lead to melting of the fuel in the reactor (also 

referred to as Core Melt). The WASH-1400 study was the first comprehensive risk 

analysis of a nuclear power plant and represented a step forward in the risk analysis of a 

complicated engineered system. The WASH-1400 was the most important development 

in the probabilistic risk analysis. 

 

This risk evaluation methodology was then improved upon. In most countries the 

method is referred to as probabilistic safety assessment (PSA). In the United States, the 

method is referred to as probabilistic risk analysis (PRA) [13,36,43,44,55]. They are just 

different name, but in the same techniques. Probabilistic risk analysis is an analytic 

method for protecting the safety. The event tree, fault tree methodology were developed 

and the significant development of the study was the use of event trees to link the 
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system fault trees to the accident initiators and the core damage states. Nowadays, 

probabilistic risk assessment is also being wildly applied to many fields such as 

transport, construction and energy etc.  

 

This thesis used probabilistic risk assessment as the tool to assist in optimization of 

the maintenance activities of the standby system. Fault tree is built to determine 

accident sequences using initiating events and systems. Initiating events and other 

failure events that comprise each system can be assigned frequencies or probabilities. 

Minimal cut sets (MCS) (i.e., a minimally sufficient group of failures that can lead to an 

undesired outcome) can be generated to quantify fault trees and sequences. The 

probabilistic risk assessment analysis has mechanisms available to perform a variety of 

different uncertainty analyses, sensitivity analyses, and importance measures. 

 

The followings are the main system analysis and quantification tools in probabilistic 

risk assessment that are used in this research. 

 

2.1.1 Fault and event trees analysis 

Fault and event trees [40] are modeling tools used as part of a quantitative analysis of a 

system. The event trees play a central role in connecting the accident initiators to the 

consequences by providing linking structure for the probabilistic risk assessment. They 

show how the systems are involved to the initiating event and then model the system 

responses in the fault tree, for simple example as shown in Fig. 2.1. 
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Fig. 2.1 Simple example of event trees that show how fault trees provide the branching 

of event trees. 
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The event trees use forward logic. They begin an initiating event that is an abnormal 

incident. A schematic of event tree is also shown in Fig 2.1. It consists of an initiating 

event and two safety systems, which are designed to mitigate the initiating event. The 

line going up shows the success (no failure) and the line going down represents the 

failure. The branching probability of safety system at a node is then determined by a 

fault trees analysis as illustrated in Fig. 2.1. 

 

The fault trees work with backward logic starting with the top event. The top event of 

the fault tree is specified by a particular failure of a system in the event tree. Using the 

Boolean operations AND, OR one write down which combinations of component faults 

events which may contribute to the top event in logical sequence to the logical 

connections. The generally used conventional fault tree symbols are shown in Fig. 2.2.  

 

The symbols shown in Fig. 2.2 can be explained as followings. 

AND gate symbol  – Output fault if all of the input faults occur. 

OR gate symbol – Output fault occur if at least one of the input faults occurs. 

Transfer in symbol  – indicates that the tree is developed further at the occurrence of the 

corresponding Transfer out. 

Transfer out symbol – indicates that this portion of the tree must be attached to the 

corresponding Transfer in. 

Basic event symbol – failure at the lowest level (no further development necessary). 

Intermediate event symbol –  a fault event that occurs because of one or more 

antecedent causes acting through logic gates. 
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Fig. 2.2. The generally used conventional fault tree symbols. 

 

 

 

 

 

 

 

 

 

Fig. 2.3. The simple example of a fault tree. 
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Such an analysis produces a tree-like structure having basic events at its extremities. 

The basic events are the finest level of detail that cannot be further dissected into more 

elementary events. The simple example of a fault tree is shown in Fig. 2.3.  

 

2.1.2 Cut sets and Minimal cut set (MCS) 

From the fault tree diagram, a cut set is a collection of basic events such that if these 

events occur together then the top event will certainly occur. The minimal cut 

set [36,43,44,55] represents the smallest combination of component failures that will result 

in the top event.  

 

The fault tree is simply represent a Boolean expression. The symbols + and * 

represent the operation of AND and OR gate respectively. For example as the fault tree 

from Fig. 2.3, which have a top event, T and three basic event A, B and C with OR gate 

G1 and AND gate G2. Then the top event is represent by 

 

Top event  = G1 

   = A  OR G2   

   = A  +  G2 

   = A  +  (B AND C) 

   =  A  +  (B*C)   

       (2.1) 

 

It is clearly that if every component fails then the top event must occur. Therefore, the 

cut set of this fault tree is given by {A, B, C}. But from the above top event Eq.(2.1) 

can explain that top event will occurs when A fails, or B and C fail together. Then 
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consider Eq.(2.1) together with the reduction rules (for example A*B + A = A), the 

MCSs for this fault tree is {A} and {B,C}.  

 

2.1.3 From probabilistic risk assessment to risk equation 

All MCSs could result in large accident. The final results of a probabilistic risk 

analysis study are then represent in the risk equation. The system unavailability model 

is usually formulated into the probabilistic risk assessment, which is an upper bound, as 

follows [20]: 

 

 

 

where  j is the index of minimal cut set. 

k is the index of each basic event of the corresponding minimal cut set.  

u jk (x) is the unavailability associated with the basic event k belonging to 

minimal cut set number j, which define an unavailability of a safety component that 

depends on the vector of decision variables x. 
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2.2 Multi-objective optimization. 

The multi-objective optimization method [16,23,27] is performed when there are 

conflicting objectives in a problem. Since in the multi-objective optimization, the effort 

is made in finding the set of trade-off optimal solutions by considering all objectives to 

be important. The multi-objective optimization problem is solved and a number of 

optimal solutions are selected from the entire feasible region; these are called 

Pareto-optimal solution [16,23,27]. Among the Pareto-optimal solutions, none can be said 

to be better or worse than the others. In another words, they are a non-dominated set.  

 

Many classical methods have been used to solve multi-objective optimization 

problems; these include the Weighted Sum Method [31] and the ε-constraint method[49]. 

Most of the classical methods start with one random guess solution. From that point, the 

algorithm is explored to search for a direction to locate a better solution. The process is 

repeated for a number of times to obtain the best optimum solution. These classical 

algorithms must be iterated many times to obtain a different solution from the 

Pareto-optimal solution set. Moreover, some of the classical methods are not efficient in 

non-differentiable, discontinuous problems or in non-convex Pareto-optimal regions. 

However, the Multi-objective optimization using genetic algorithms can diminish these 

problems. Because genetic algorithms work with a population of solutions, it is 

advantageous to obtain the Pareto-optimal solutions in a single simulation run. GA can 

be developed to give equal emphasis to all non-dominated solutions in the population 

and to simultaneously maintain a diverse set of multiple non-dominated solutions.  
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2.2.1 Genetic algorithms (GA) 

In this subsection, we will briefly describe the general concept of genetic 

algorithms[27,38,54] for single-objective to be the basic for the multi-objective 

optimization using genetic algorithms that will be explained in next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. A flowchart of the working principle of a GA [27]. 

 

Genetic algorithms are the efficient search and optimization tools. The flowchart of 

the working principle of GA is illustrated in Fig.2.4. The searching of GA starts with 
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initial a random set of solutions, which are call population. It is different from the 

classical methods that operating with one solution. Then, a value of the objective 

function is calculated by considering each of the population as parameter. These 

calculated values of the objective function are called fitness.  After that, the generation 

number is checked. If it is still not satisfied, three main operators, which are the 

selection operator, the crossover operator, and the mutation operator, have been 

performed to modify the population of the solutions to be a new population. This new 

population is expected to be better than the old population. Accordingly, the one 

generation GA is completed and the next generation is performed.  

 

For each of the three main operators of genetic algorithm will be described as 

follows: 

 

(1) Reproduction or Selection Operator 

The reproduction operator is mainly purposed to make copies of good solutions and 

eliminate bad solutions in a population, while keeping the population size constant. The 

selected better solutions have been copied into the mating pool and the worse solutions 

have been discarded. 

 

(2) Crossover Operator 

With realize that the reproduction operator cannot create any new solutions in the 

pupation. The crossover and mutation operators have been processed to perform the 

creation of new solutions. In crossover operation, two solutions are random picked from 

the mating pool and are blended into two new solutions. 
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(3) Mutation Operator 

The mutation operator is generally used to create a local perturbation that is useful in 

keeping diversity in the population.  

 

2.2.2 Multi-objective optimization using genetic algorithms [27] 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5. The NSGA-II procedure [27] 

 

In this research, the Elitist Non-Dominated Sorting Genetic Algorithm or NSGA-II 

by Deb et al. [27] has been chosen. NSGA-II is a multi-objective GA, which has the 

advantage of a crowding comparison procedure acting as an explicit 

diversity–preserving mechanism. The procedure is illustrated in Fig. 2.5. 

 

In NSGA-II, the parent population Pt first creates the offspring population Qt by GA, 

as described in section 2.2.1. The two populations are then combined to form Rt of size 

2N. Next, non-dominated sorting is used to rank Rt into various fronts as shown in 
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Fig.2.6. To select the new population, the best non-dominated front (f1 front) is chosen, 

followed by the f2 front and continuing with the next non-dominated front. Because the 

original population size is N, the entire population from Rt cannot be selected to be the 

new population.    

   

 

 

 

 

 

 

 

 

Fig. 2.6 Example of non-dominated sorting into fi front for problem of minimizing of 

objectives f1 and f2 

 

As seen from Fig. 2.5, the last selected front, which causes the mating pool to 

exceed N in population size, has been considered, while other worse non-dominated 

fronts can be deleted. The niching strategy of a crowding tournament selection operator 

is used to choose the members of the last front for the purpose of maintaining diversity 

in the solutions. After that, another offspring population is created from the selected 

new population by a GA process such as selection, crossover and mutation operations. 

The generation is then completed, and the generation counter is increased. 
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2.3 Decision making in the Pareto-optimal solutions 

Once a set of non-dominate Pareto-optimal solutions is obtained, some higher-level 

decision-making considerations are used to choose a solution as a schematic shown in 

Fig.2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.7. Schematic of a multi-objective optimization procedure [27]. 
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Figure.2.7 shows schematically the principles in the multi-objective optimization 

procedure. In step1, multiple trade-off solutions are found. Thereafter, in step2, which is 

the concept of the decision-making in the Pareto-optimal solutions presented in this 

subsection, higher-level information is used to choose one of the trade-off solutions.    

 

The generally used conventional method of identifying the promising point within 

the Pareto-optimal solution, called the global criteria method [27], gives a solution as the 

closest position to the ideal point [60,61].  An example of the ideal point is represented as 

Z* in Fig. 2.8. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8. The method of global criteria 

 

The ideal point, which is not located in the feasible region shown by the gray area, is 

defined as the point of the lower bound of all objective functions. In the concept of the 

conventional method, the solution that is minimally located from this point is 
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considered to be appropriate. Using the Euclidean distance, the method of global criteria 

is shown as 

 

 

where zi* is the ith coordinate of the ideal point, and n is the number of objective 

functions. 

 

Because each objective function value has a different dimension, the values of the 

objective function should be normalized before calculating the distance from each point 

on the Pareto-optimal solutions to the ideal point. The normalized term is shown as 

follow 

  

 

Where fin(x) is the normalized value of the objective function value fi(x).   

fimax and fimin are the maximum and minimum values of the objective function fi 

respectively.  

Henceforth, the distance from the point on the Pareto-optimal solutions normalized 

by Eq.(2.4) to the ideal point will be called the normalized distance in this research. The 

normalized distance values varies within the range of 0～1. 

 

  However, the concept of the decision-making for the Pareto-optimal solutions by the 

conventional method does not determine the robustness. Therefore, the obtained 

decision point may not have enough robustness. This research then proposed the 

decision-making for the Pareto-optimal solutions in the viewpoint of robustness in 

chapter3 and chapter4. 
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2.4 Risk-based maintenance  

Risk-based maintenance (RBM) [46,62,63] is an approach to improving maintenance 

management systems, programs, and practices. The advantage of RBM over normal 

maintenance approaches is that RBM provide a maintenance activities program using 

risk as a basis for prioritizing and managing the efforts of the inspection and 

maintenance programs. Risk Based approaches is used to rearrange inspection and 

maintenance resources to increase attention, such as frequency of inspection or 

maintenance, on high-risk items and reduce it in lower risk equipment. Therefore, RBM 

make more effective use of resources while maintaining a high level of safety. 

 

2.4.1 The definition of risk. 

 Risk [55] is the product of ‘likelihood of an unwanted event P’ and the ‘consequences C 

of that unwanted event’, or in mathematical form given as, 

     

R = P･C     (2.5) 

   

Then risk simultaneous accounts for both likelihood and consequence of an event. 

The event probability P is such as component failure rates. In the standby system, the 

unavailability of the system is a very important parameter. Therefore the unavailability 

is usually considered to be an equivalent parameter for the likelihood of event.  
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2.4.2 Risk matrix 

In order to illustrate risk, the likelihood and consequence is displayed on an X-Y plot 

as shown in Fig. 2.9. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Likelihood and consequence X-Y plot. 

 

From the X-Y plot of likelihood and consequence, in order to categorize the risk, the 

qualitatively or quantitatively risk is determined. For the qualitatively risk, the 

likelihood and consequence of event are determined as high or low category. While for 

the quantitatively risk, the likelihood and consequence of event are determined as 

magnitude. In this research, we apply the qualitatively risk analysis and the X-Y plot of 

likelihood and consequence in qualitatively risk analysis can be determined as the risk 

matrix as shown in Fig.2.10. 
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Fig. 2.10. Qualitative risk matrix. 

 

Thereafter, the concept of risk-based decision-making is determined by focusing in 

the area of high, medium and low risk to prioritize the components for maintenance 

corresponding to their risk-significance as described above.  

 

2.4.3 Risk-based inservice testing by ASME 

 For the risk based maintenance of components in the standby system such as pumps 

and valves, the American societies of mechanical engineers (ASME) have developed 

guidelines for Risk-based maintenance for testing or so called risk-based inservice 

testing (RBT) [9,10,30,59]. 

 The relative ranking of the standby components developed by ASME requires the 

importance measures [35,37,52], which are the Fussel-Vesely (FV) and the Risk 

Achievement Worth (RAW), as a quantitative decision criteria. The details of the 

importance measures are shown in section 2.4.4. FV and RAW used as a measure of risk 
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importance and safety importance, respectively. Component important ranking by 

ASME is determined by the combination of FV and RAW matrix.  

 

For the purpose of dividing the plot of FV-RAW matrix into four quadrants, FV 

indicating level of 0.001 (0.1%) and RAW indicating level of 2 have been defined by 

the ASME.  Figure 2.11 illustrates an example of a plot of FV-RAW matrix. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 RAW/FV quadrant graph of risk by ASME[9] 

 

From Fig.2.11, components in quadrant A may be candidates for no or relaxed testing. 

Components in quadrant C should have focused for effective testing. While, infrequent 

test are considered for components in quadrant B and D. 

 

However, by this ASME method, the risk significance of the components may locate 

in the same quadrant, although there are extreme differences in their values. Therefore, 

fixing the values of FV and RAW for creating the risk matrix by ASME is not flexible 
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enough. Moreover, the ASME method has not clearly presented the method to revise 

risk-ranking process. Therefore, the ASME method may not clearly give the most 

optimal surveillance test interval groups for the surveillance test based on risk 

consideration. Moreover, the method by ASME does not consider the multi-objective 

optimization and robustness for the surveillance test. Therefore, in chapter 5 of this 

research, the risk-based in-service testing policy using multi-objective optimization with 

robustness is proposed. The proposed methodology in chapter 5 is for determining the 

robust surveillance test with the most optimal surveillance test interval based on risk 

consideration. The processes in the proposed methodology have the idea of risk ranking 

and revising risk matrix and the proposed risk matrix that is more flexible for each 

system and situation. 

 

2.4.4 Risk Importance Measure 

  Risk importance measures [35,37,52] have been defined for the interpretation of 

probabilistic risk analysis (PRA) and for their use in the prioritization of operation and 

safety improvements.  

 

Table 2.1 The importance measures used in the RBT by ASME 

   

 

 

 

 

 

 

Importance Measure Abbreviation Principle

Fussell-Vesely FV
R(base) - R(xi = 0)

R(base)

Risk achievement worth RAW R(xi = 1)
R(base)
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  Table 2.1 shows the risk importance measures that are used in the risk based inservice 

testing defined by ASME. In Table 2.1 the following definitions are used. 

 

R(xi = 1), the increased risk level without basic event xi or with basic event xi assumed 

failed, 

R(xi = 0), the decreased risk level with the basic event optimized or assumed to be 

perfectly reliable, 

R(base), the present risk level, 

xi(base), present risk of component i 
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Chapter 3 
 

Decision making for the Pareto-optimal solutions 
in the viewpoint of sensitivity 
____________________________________________________________________ 

 

3.1 Introduction  

In the maintenance activities of a nuclear power plant, the objective usually involves 

more than one factor regarding, including low levels of system unavailability and low 

costs in maintenance activities. Therefore, the problem should be considered as a 

simultaneous multi-objective optimization. A multi-objective optimization problem is 

solved and the Pareto-optimal solutions are then obtained. After a set of non-dominated 

Pareto-optimal solutions is obtained, some higher levels of decision-making are 

required to choose an appropriate solution. One of the conventional methods for 

selecting the appropriate solution from the alternatives in the Pareto-optimal solutions is 

the global criteria method. However, there are high sensitivities of a variation in one 

objective value to a variation in the other in some regions of the Pareto-optimal 

solutions. Nevertheless, the conventional method does not consider this robustness of 

sensitivity. Therefore, in this chapter, new sensitivity index is proposed for 

decision-making when the robustness of sensitivity is part of the intention. 

 

3.1.1 Problems in the conventional method  

The conventional method called global criteria [27], which is explained in chapter 2, 

is widely used for the decision-making on the Pareto-optimal solutions. With this 
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method, the one solution among the Pareto-optimal solutions that is closest to an ideal 

point is selected.  

 

 

 

   

 

 

 

 

 

 

 

 

Fig 3.1. The typical Pareto-optimal solutions in minimization of objective functions F1 

and F2. 

 

Although there is no problem for selecting a decision point by the conventional 

method for Fig.2.8 in Chapter 2, however, in the case of Fig.3.1, a problem does occur. 

Fig.3.1 shows some regions in the Pareto-optimal front in which a variation in one 

objective value has high sensitivity to a variation in the other objective function value. 

This means that the solution has no robustness in operation. Since, the conventional 

method does not consider this sensitivity, it is possible that the obtained solution may be 

located in high sensitivity zones.  
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For example, the point A in Fig.3.1 is the solution that is minimally located from 

the given ideal point (Z*). Nevertheless, this solution is located in a high sensitivity 

zone; here, objective function value F2 is highly sensitive to variations in objective 

function F1 values. In this case, the decision made by the conventional method does not 

have the robustness.  If not only the robustness but also the distance from an ideal 

point is considered, an appropriate index is required along with the Pareto-optimal 

solutions. In this chapter, this new sensitivity index is proposed.  

 

3.2. Sensitivity index 

The sensitivity of a variation in one objective value to a variation in the other for the 

solution on the Pareto-optimal curve is expressed by the proposed sensitivity index, 

defined by the following dimensionless expression: 

 

 

 

where ∆Fj and ∆Fk  are the variation around specified objective function values 

jF and kF  on the Pareto-optimal curve. 

 

The basic idea of this sensitivity index is as follows. 

If SI = 1, the variation in the objective functions values Fj and Fk are approximately 

equivalent.     

If SI > 1 or SI < 1, there is more variation in one objective function values than in 

the other objective function values and SI value shows the degree of that influence. 
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Therefore, it is possible that the degree of sensitivity can be measured using SI. The 

solution with SI = 1 shows that it is robust and have the lowest sensitivity for all of 

objectives. Moreover, by using SI a criterion for sensitivity can be set up. For example, 

in this paper, we define the range of 5.15.1/1 ≤≤ RI  as robust, i.e. the range in which 

the variation in one objective is not greater than 1.5 times the variation in the other.   

 

3.3. Procedure to determine the decision-making point in the Pareto-optimal 

solutions 

The decision-making process becomes more rational than before if the SI is used 

combined with the conventional method as follows. 

 

(1) When the point closest to the ideal point is coincide with that of the 

decision-point at SI = 1, the point is appropriate because both conditions are satisfied. 

 

(2) When the distance to the ideal point is more important than the sensitivity, the 

conventional method is appropriate.  

 

(3) When emphasis is placed on the sensitivity, the sensitivity index is used for 

evaluation. 

 

(4) When both the distance to the ideal point and the sensitivity are important, the 

following process is proposed. 

 

1. The graph relation between SI values and normalized distances is drawn at first as 

shown in Fig.3.2(a). The normalized distances are the normalized distances from the 
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point on the Pareto-optimal solutions as explained in section 2.3 of chapter 2. The 

normalized term is shown by the normalized termed in Eq.(2.4). 
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2. From Fig.3.2(a), the acceptable area shown with a dashed line is extracted. For 

this extracted area, the vertical axis and the horizontal axis are then normalized by 

Eq.(1) and then plotted the normalized space of the extracted area as shown in 

Fig.3.2(b). 

 

3. Because the ideal point for the extracted area can be determined as the point 

whose SI values equals to 1 and normalized distance is minimum, as point O in 

Fig.3.2(a) and Fig.3.2(b), the minimum distance point from point O in Fig3(b) is 

considered as decision-making point. 

 

(5) When the Pareto optimum curve have a number of inflection points as shown in 

Fig 3.1 and Fig.3.3, there might be a number of lowest sensitivity points with SI = 1. In 

this case, it is possible to determine the optimal point from the consideration of both 

sensitivity and closeness to the ideal solution. And the decision-making point is the 

point with SI = 1 that is closest to the ideal point as illustrated in Fig.3.3. 

 

 

 

 

 

 

 

 

Fig.3.3 The decision making point when the Pareto optimum curve have a number of 

inflection points. 
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 Moreover, in some conditions, the multi-objective optimizations are the constrained 

problems. Typically, a constrained multi-objective optimization problem can be subject 

to the constraint functions such as;  gj(x) ≥ 0, j = 1,2,…,k, where x is the decision 

variables. Constraints divide the search space into feasible and infeasible regions. With 

constraints, a part of the original Pareto-optimal region is not feasible and a new 

Pareto-optimal region emerges as shown in Fig.3.4. 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Pareto-optimal fronts for the constrained multi-objective optimization[27] 

 

  As illustrated in Fig.3.4, which is reference from the example problem by Deb et 

al 2001[27], the Pareto-optimal fronts of constrained multi-objective optimization are 

more complicated. In some regions, the sensitivities of a variation in one objective value 

to a variation in the other of the Pareto-optimal solutions are almost constant. For such 

these Pareto-optimal solutions, the procedures to determine the decision-making point 

are illustrated in following section 3.3(6).  

 

Pareto-optimal fronts

F1

F2 Feasible region
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(6) When the Pareto-optimal solutions not have the SI = 1 point al all. This condition 

can be considered into 2 cases as follows. 

 

1. When the feasible Pareto-optimal solutions not have the SI = 1 point and there is 

no point that its SI value is suddenly changed. Then, the SI values on the Pareto-optimal 

curve are then gradually changed or not changed. The examples of this case are shown 

in Fig.3.5-a, Fig.3.5-b  

 

 

 

 

 

 

  Fig.3.5-a    Fig.3.5-b 

Fig.3.5 Decision making for the Pareto-optimal solutions that do not have the SI = 1 

point and do not have the point of suddenly changed of SI value. 

 

For these cases, because the degree of robustness for each point on the 

Pareto-optimal curve is not significantly different, thus the decision making point 

(point D in Fig. 3.5) should be the point that is closest to the ideal point (point Z*). 

 

2. When the feasible Pareto-optimal solutions not have the SI = 1 point and there is 

the point whose SI value is suddenly changed. The examples of this case are shown in 

Fig.3.6-a, Fig.3.6-b  
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  Fig.3.6-a      Fig.3.6-b 

 

Fig.3.6 Decision making for the Pareto-optimal solutions that do not have the SI = 1 

point and there is the point whose SI value is suddenly changed. 

 

For these cases, first, the sensitivity index of each solution on the Pareto-optimal 

solutions is evaluated. After that, determine the point whose SI value is suddenly 

changed, while this point is non-robust and should not be selected. Thereafter, divide 

the Pareto-optimal curve into many parts at the SI point that is suddenly changed. Then, 

select the part of the Pareto-optimal curve that has the point whose SI value is closest to 

1.0. For example in Fig.3.6-a, the part of Pareto-optimal curve that has almost constant 

value of SI = 0.8, which is closer to 1.0 than SI = 1.4 in the other part, is chosen. The 

decision-making point is the point whose SI value is closest to 1.0. By the way, if this 

decision-making points by SI is located close to the non-robust point whose SI value is 

suddenly changed, the decision-making point should then be the point closest to the 

ideal point (point Z* illustrated in Fig.3.6-a, 3.6-b) of the selected part of the 

Pareto-optimal curve. 
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3.4 Case study  

In this research, to assure the applicability of the proposed methodology and 

indexes, the standby simplified high-pressure injection system (HPIS) of a nuclear 

power plant’s pressurized water reactor (PWR) that is taken from reference [33] is 

shown below is examined. 

 

 

 

 

 

 

 

Fig. 3.7 HPIS system [33]. 

 

This system is normally in standby mode. Under accidental conditions, the HPIS can 

be used to remove heat from the reactor in those events in which the steam generators 

are unavailable.  

 

3.4.1 The fault trees analysis and the minimum cut sets of the case study system 

As described in chapter 2, in order to determine the unavailability of the standby 

HPIS system in Fig. 3.7, the fault trees is built as shown in Fig. 3.8 by considering the 

top event as the event that there is no flow through the injection path A and B, which 

means that this system is fail for operating. The symbols using for creating the fault 

trees in Fig.3.8 are shown in Fig.3.7. The basic events in Fig.3.8 is illustrated as 

bellows, 
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The basic event V1 is illustrated as the events that VALVE1 fails. 

The basic event V2 is illustrated as the events that VALVE 2 fails. 

The basic event V3 is illustrated as the events that VALVE 3 fails. 

The basic event V4 is illustrated as the events that VALVE 4 fails. 

The basic event V5 is illustrated as the events that VALVE 5 fails. 

The basic event V6 is illustrated as the events that VALVE 6 fails. 

The basic event V7 is illustrated as the events that VALVE 7 fails. 

The basic event P1 is illustrated as the events that PUMP 1 fails. 

The basic event P2 is illustrated as the events that PUMP 2 fails. 

The basic event P3 is illustrated as the events that PUMP 3 fails. 

 

The fault tree in Fig.3.8 is simply represent by Boolean expression as shown in 

Eq.(3.2) 

 

Top event = G1 

 = G2・G10 

 = (G3･G8)･(G11･G13) 

 = [(V6 + G4)･(V3 + G6)]･[(V7 + G12)･(V5 + G14)] 

 =  [(V6 + (G5･G7))･(V3 + PA + (V1･V2))]･ 

  [(V7 + (PB + (V1･V2))･G5)･(V5 + (PC + (V1･V2)))] 

  = [(V6 + (V4 + PA + (V1･V2))･(PB + (V1･V2)))･ 

   (V3 + PA + (V1･V2))]･[(V7 + (PB + (V1･V2) )･ 

   (V4 + PA + (V1･V2)))･(V5 + (PC + (V1･V2)))] 

(3.2) 
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Fig 3.8 The fault tree diagram of HPIS 
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From the Boolean expression in Eq.(3.2), the minimal cut sets (MCS) can be 

generated as expressed in Eq.(3.3).  

 

MCS   = {PA･PB･PC} +  {V1･V2} +  {PB･PC･V3･V4} +  {PA･PB･V5} + 

  {PB･V3･V4･V5} + {PA･PC･V6･V7} + {PC･V3･V6･V7} + 

  {PA･V5･V6･V7} + {V3･V5･V6･V7} 

          (3.3) 

 

3.5 From probabilistic risk assessment to risk equation. 

The nuclear power plants are designed according to the defence-in-depth principle, 

one single failure of a component or basic event will probably not result in a large 

accident. A large accident is the result of the combinations of multiple basic events. The 

probabilistic risk assessment methodology determines all-important cut sets that could 

result in a large accident. The final results of a probabilistic risk assessment study are 

then represented in the risk equation. 

 

The purpose of this research is to optimize the effective of surveillance test interval 

(STI) in the maintenance activities of a standby system by considering both system 

unavailability and maintenance costs as simultaneous objectives. This subsection will 

show that STI are represented through appropriated parameters included within the 

model of system unavailability and maintenance costs, which will be adopted as 

decision variables for the optimization process. The formulation of the objective 

functions, which are the unavailability function and cost function, are taken from the 

model developed by S. Martorell et al [50] and are summarized below. These objective 

functions are represented by probabilistic risk assessment as described above. 



 57

3.5.1 Unavailability function [50] 

Unavailability [15] is the probability that a system or component is not performing its 

required function at a given point in time or over a stated period of time when operated 

and maintained in a prescribed manner. 

 

The unavailability of a safety function, in turn, depends on the unavailability of the 

associated safety-related systems, normally on standby and ready to operate on demand. 

The quantification of the system unavailability is possible using several methods [20,32]. 

Normally, the fault trees are used to represent the structure function and then the 

Minimal Cut Sets (MCS) are determined into the probabilistic risk assessment 

model[4,14,24,26,34,47,50]. The unavailability of the system is defined as the top event while 

the unavailability of the safety components are defined as the basic events. The Minimal 

cut set then represents a minimum set of unavailability states of the safety components 

(or basic events in the probabilistic risk assessment). Correspondingly, as described in 

section 2.1.3 of chapter 2, the system unavailability model is usually formulated into the 

probabilistic risk assessment, which is an upper bound, as follows [20]: 

 

 

 

where  j is the index of minimal cut set. 

k is the index of each basic event of the corresponding minimal cut set.  

u jk (x) is the unavailability associated with the basic event k belonging to 

minimal cut set number j, which define an unavailability of a safety component 

that depends on the vector of decision variables x.  

 

,)()( ∑ ∏≈
j k

jk xuxU             (3.4)
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Consequently, using the model in Eq.(3.4), the component unavailability is needed 

to derive the system unavailability. From the literature reviews of ref. [50] 

unavailability contributions of a component normally in standby can be divided into two 

main categories as:  

 

1) Unavailability due to random failures called the reliability effect. 

2) Unavailability due to testing and maintenance downtimes called the downtimes 

effect. 

 

Considering unavailability from reliability effect, time dependent unavailability due 

to random failures at time interval T of the surveillance test interval (STI) and the 

average unavailability due to random failures can be expressed respectively as, 

 

 

 

 

 

 

where  ρ is a per-demand failure probability. 

λ is the standby failure rate.  

 

The unavailability due to downtime effect, which are shown in the following 

expressions, are commonly used and determined for applied in this research. 

 

 

,),( TTxur ⋅+≈ λρ      (3.5)

,
2
1)( Txur ⋅+≈ λρ     (3.6)
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   ).()()()( xuxuxuxu ctr ++=        (3.10)

 

 

 

where  ut (x) is the unavailability due to testing  

uc (x) is the unavailability due to corrective maintenance. 

 

For Eq.(3.7) and Eq.(3.8), the following notation has been used: 

ft (x) = 1/T  is the rate of testing events.  

t = mean downtime due to testing. 

qo
t = fraction of the total downtime t with the component unavailable [0,1]. The 

parameter qo
t is usually set equal to one with considering that t, which is defined 

now by the mean down time, represents the time the component is really 

unavailable for the surveillance test. 

fc (x)  is the rate of corrective maintenance events.  

d = mean downtime due to corrective maintenance. 

 

While for the component normally in standby which undertakes surveillance test 

interval T, fc (x)  can be expressed as the following equation 

 

     fc (x)  = 1/T・ur (x,T)         (3.9) 

 

From Eqs.(3.5)-(3.9), each component unavailability model of ujk(x) in Eq.(3.4) can 

be expressed as, 

 

 

,)()( t
ott qtxfxu ⋅⋅=      (3.7)

,)()( dxfxu cc ⋅=     (3.8)
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),()()( xcxcxc ct +=                   (3.12)

htt c
T
txc ⋅=)(                    (3.13) 

hccc cdxfxc ⋅⋅= )()(                   (3.14)

3.5.2 Cost function [50] 

The maintenance cost model of the standby safety system expresses the relation to 

surveillance test intervals. The model involves the contributions to the component cost 

model can be represented as following, 

 

 

where  i is the index of each component. 

ci (x) is the maintenance cost model of the component i. 

 

The cost model of each component can be expressed as, 

 

 

where  ct (x) is the yearly cost contribution as a consequence of the number of tests 

being performed over a year period. 

cc (x) is the yearly cost contribution as consequence of performing corrective 

maintenance. 

 

Consider a component normally in standby, which carries out the surveillance test 

interval T, the basic cost contributions can be adopt as follows 

 

 

 

 

 

 

,)()( ∑=
i

i xcxC            (3.11)
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Unit λ (10-6/h) ρ (10-3) t (h) d (h) cht ($/h) chc($/h)

Valves(V)

Pumps(P)

5.83

3.89

1.82

0.53

0.75

4

2.6

24

20

20

15

15
 

where  cht represents the hourly costs for testing.  

chc is the hourly costs of corrective maintenance. 

While fc (x) can be obtained using Eq.(3.9). 

 

 

3.6 Objective functions data. 

In order to derive the objective functions of the unavailability function and cost 

function as described in the section 3.5, the related component unavailability and cost 

data of the HPIS system are summarized from ref.[33] and are shown in Table3.1. 

 

 

Table 3.1. Component unavailability and cost parameters [33]. 
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3.7 Multi-objective optimization parameters 

After formulating the simultaneous objective functions of the unavailability function 

and cost function, the multi-objective optimization is performed by NSGA-II method. 

The parameters shown in Table 3.2 are then used for multi-objective optimization. 

 

Table 3.2. Parameters used in the multi-objective optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Values

Encoding mechanism

Population size

Real-parameter

500

Generation numbers 20

Crossover probability 0.6

Mutation probability 0.01
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 x = {T1, k1, k2}      (3.15)

T 1 V1, V2

T 2 PA, PB, PC, V3, V5

T 3 V4, V6, V7

 
 

3.8 Results and Discussions 

In order to assure the effectiveness of the proposed methodology and indexes, the 

case study of HPIS explained in section 3.4 is applied.  

 

Then, in order to optimize the surveillance test program in the maintenance activities 

of this HPIS system, the system components have been classified into three surveillance 

test interval groups; each group will be tested in the same interval, as shown in 

Table3.3. The symbols in Table 3.3 are shown in Fig. 3.7. 

 

Table 3.3. Groups of test intervals. 

 

 

 

 

 

Test intervals for each group are constrained as the follows: 

 

  

 

 

 

Consequently, the maintenance activities optimization of this system has decision 

variables set, x, as shown in Eq.(3.15)  
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3.8.1 Results and Discussions 

After the objective functions of the unavailability function and cost function are 

derived as explained in the section 3.5 by using the related component unavailability 

and cost data of maintaining the system are shown in Table 3.1, the multi-objective 

optimization is applied by using the parameters shown in Table 3.2. The result of 

Pareto-optimal solutions for minimizing both unavailability and maintenance cost are 

shown in Fig.3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.9. The Pareto-optimal solutions for minimization of unavailability and 

maintenance cost. 
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From the result of Pareto-optimal solutions in Fig.3.9, it can be shown that 

Pareto-optimal solutions provide more information than single-objective optimization. 

However, there are some Pareto-optimal solutions that are not appropriate because of 

their high sensitivities of a variation in one objective value to a variation in the other. If 

the single objective optimization is performed in these high sensitivity areas, the 

optimization result may not robust enough.  

 

For example of the point PA in Fig.3.9, if a single-objective optimization in which 

unavailability is set at the constraint value of 2.36E-5; in such a case, the one objective 

cost optimal solution will be $2766. But if unavailability at point PB is set as a 

constraint value of 2.46E-5, the cost optimal value will be $1380. This means that 

around 2.46E-5, a mere difference in the unavailability constraint value of only 1.E-6, 

causes the maintenance cost optimization value to have a difference of $1386, or in 

practical terms, to nearly double. It can be explained that there are high sensitivities of 

unavailability value to cost value in this region.  

 

On the other hand, at point PE, the optimal unavailability value is 1.18x10-4 and the 

optimal cost value is $400. At point PF, the optimal unavailability value is 1.43x10-4 and 

the optimal value of cost is $373. This indicates that around these points, a slight 

variation (only $400-$373 = $27) in the maintenance costs causes the variation in 

unavailability optimization value up to 2.5x10-5. This means cost has high sensitivities 

of maintenance cost value to unavailability value in this zone.  

 

However, about the point PC and PD, around unavailability value of 3.19E-5, a small 

difference in the unavailability constraint value of only 1.E-6 causes the maintenance 
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cost optimization value to have a small difference of only $880-$853 = $27. Thus, in 

this zone, there are low sensitivities for all of objectives.  

 

From the above discussion, if the constraint is not chosen appropriately in a 

single-objective optimization, the optimization result may fall in the region of high 

sensitivity. When the maintenance activities are performed in these high sensitivity 

areas, it is possible that only little variation of the parameters may make the expected 

objective function values changed with lacking of robustness. Therefore, the sensitivity 

analysis with the Pareto optimum solution is very important.  

 

The sensitivity index for the Pareto-optimal solutions is introduced as proposed in 

section 3.2. From the SI values for points PA to PF in Fig.3.9 show that the SI values are 

far apart from the value of 1.0 in the high sensitivity zones. And SI is equal to 1.0 at 

point PD, which is described above that this PD point has low sensitivity for all objective 

functions. Therefore, it is shown that the proposed sensitivity index is appropriate to 

find out the robust solution. 
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In addition, the relation of the calculated sensitivity index values plotted with 

unavailability is shown in Fig.3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.10. The sensitivity index values plot with unavailability. 

 

Because the degree of sensitivity can be represented by the sensitivity index, the 

acceptable robust range for the decision-making can be quantitatively specified. 

Therefore, it is possible to make the decision-making flexibly. For example, in this 

paper the acceptable range of 5.15.1/1 ≤≤ SI  is defined. This means that the variation 

in one objective is not greater than 1.5 times the variation in the other.  
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As seen from Fig.3.10, the solutions from point SL to SU are the acceptable range of 

solutions that are robust. The SI value of point SA equals to 1. This point SA then has the 

lowest sensitivity for all objectives. When both objectives are equally important, this 

point is suggested as the best decision-making point. If the maintenance cost is more 

important than the unavailability, the results in the range 5.11 ≤< SI  can be selected. 

On the other hand, if the unavailability is more important than the maintenance cost, the 

best results are found in the range 15.1/1 <≤ SI .  

 

The decision making point obtained by the proposed sensitivity index was also 

compared with that obtained using the conventional method. As described in chapter2, 

the decision point by the concept of conventional method is a solution that is minimally 

distant from a given ideal point. Table 3.4 compares the normalized distance suggested 

by each method. And, those decision-making points by each method are shown in 

Fig. 3.10. 
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Fig 3.11. The Pareto-optimal solutions with decision points suggested by the proposed 

index and the conventional. 

 

Table 3.4. The distance after normalized objective values from the suggested decision 

point to the ideal point by each method represent with their corresponding SI value. 
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From Table 3.4, it is shown that the normalized distance of the decision-making 

point SA by the proposed index is only a small value further than the decision-making 

point B by the conventional method. But the point SA provides less sensitivity and 

higher in robustness than the point B. If the distance to the ideal point is more paid 

attention than the robustness, the conventional method is appropriate. Nevertheless, the 

proposed index is recommended because it provides the solution that has the smallest 

sensitivity and its result is also very close enough to the ideal solution. Moreover, the 

Fig.3.11 also shows that the decision point B by the conventional method is located out 

of the range of the acceptable sensitivity. So, this point B may not be sufficiently robust. 

 

In addition, the good compromise decision-making point between the proposed index 

and the conventional method is determined according to the section 3.3(4). At first, as 

seen from Fig.3.12, the relation between SI and normalized distance is plotted. The area, 

which exists in the acceptable range of robustness 5.15.1/1 ≤≤ SI , is then specified. 

Thereafter, the specified area in Fig.3.12 is extracted and the values of both horizontal 

and vertical axis are normalized as shown in Fig.3.13.  

 

From Fig.3.13, the point C that is located minimally to the ideal point O of this 

extracted area is the compromise decision-making point. The compromise 

decision-making point C is shown in Table 3.4, and also illustrated in Fig 3.11. If we 

pay attention to both the normalized distance and SI value, both of these values can be 

satisfied with only point C among the mentioned methods above. Therefore, it is 

considered that the point C is appropriate as the compromise decision-making point. 
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Fig 3.12. The sensitivity index values plot with the normalized distance. The determined 

ranges are also illustrated. 

 

 

 

 

 

 

 

 

 

 

Fig 3.13. Normalized acceptable SI range plot with normalized determined distance 

range and decision-making point by considering by both methods. 
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3.8.2 Sensitivity studies of the decision variables to the Pareto-optimal values 

In addition, the sensitivities of variation of each decision variables also have the 

effect on both objective function values. Therefore, in this section, the sensitivities of 

each decision variables to both objective function values are determined.  

 

First, the results of decision variables T 1, T 2(k1･T 1) and T 3 (k1･k2･T 1) plotting 

with the first objective function values, which is the system unavailability, are shown in 

Fig.3.14 - Fig.3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.14. Optimal unavailability-T 1 plot 
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Fig 3.15. Optimal unavailability-T 2 plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.16. Optimal unavailability-T 3 plot 
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Thereafter, Fig.3.17 - Fig.3.19 show the results of decision variables T 1, T 2 and 

T 3 plotting with the second objective function that is of system maintenance costs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.17. Optimal maintenance costs-T 1 plot 
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Fig 3.18. Optimal maintenance costs-T 2 plot 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.19. Optimal maintenance costs-T 3 plot 
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The result of decision-making point in the viewpoint of robustness of sensitivity at 

SI = 1 from Table 3.4 (sensitivity variation in one objective value to a variation in the 

other objective function value) is also shown in Fig. 3.13 - Fig. 3.18. From 

Fig. 3.13 - Fig. 3.18, by observation with the naked eyes, they are shown that at the 

decision making point at SI = 1 form Table 3.4 are in the zone that the sensitivity of 

variation in the decision variable values (T 1, T 2 and T 3) to both objective functions 

values (unavailability, maintenance costs) are low.  

 

In order to determine the sensitivity of variation in the decision variable values to 

both objective functions values quantitatively, the proposed sensitivity index, which is 

explained by Eq.(3.1) of section 3.2, is capable to be applied by considering Fj and Fk in 

Eq.(3.1) as objective function and decision variable, respectively.  

 

When using the sensitivity index to determine the sensitivities of the variation in 

decision variable to the objective function, the solutions with little values of SI are 

preferred. From the basic idea of the sensitivity index, the solutions at sensitivity index 

value = 1 is considered that the variation in the decision variable values and the 

objective function values are approximately equivalent. When the sensitivity index > 1, 

there are the tendency to be high in sensitivities because the variation in the objective 

function values are greater than the variation in the decision variable values.  

 

The results of sensitivity index for decision variables T 1, T 2 and T 3 to the first 

objective function, which is the system unavailability, are shown in Fig.3.20-Fig.3.22 
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Fig 3.20. Sensitivity index for T 1 to unavailability – unavailability plot 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.21. Sensitivity index for T 2 to unavailability – unavailability plot 
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Fig 3.22. Sensitivity index for T 3 to unavailability – unavailability plot 
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The results of sensitivity index for decision variables T 1, T 2 and T 3 to the second 

objective function , which is the maintenance costs, are shown in Fig.3.23-Fig.3.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.23. Sensitivity index for T 1 to maintenance costs – maintenance costs plot 
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Fig 3.24. Sensitivity index for T 2 to maintenance costs – maintenance costs plot 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.25. Sensitivity index for T 3 to maintenance costs – maintenance costs plot 
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The results from Fig.3.20-Fig.3.25 show that the decision-making point at SI = 1 

from Table 3.4 (sensitivity variation in one objective value to a variation in the other 

objective function value) also shows the low values in sensitivity for decision variables 

to the objective function values. Because it has the sensitivity index values < 1 

(sensitivity index of decision variables to the objective function values) for almost of 

all.  

 

However, when considering the sensitivity of each decision variable to each objective 

function, the results of Fig.3.20 - Fig.3.22 show that it is generally the same for the 

effect of sensitivity of each decision variable to unavailability (because the sensitivity 

values for all decision variables are around order of 0-2.5). But, the results of 

Fig.3.23 - Fig.3.25 show that the effect of sensitivity of T 1 to maintenance costs is 

greater than T 2 and T 3 (because the sensitivity values for T 1 are around order of 0-10, 

while the sensitivity values for T 2 and T 3 are around order of only 0-1.5). 

 

When considering the solutions from the perspective of all decision variables, in the 

part of Pareto-optimal curve that is high in sensitivity of decision variables to the 

determined objective function, that determined objective function values are also 

rapidly changed. Therefore, in that part, there is the tendency for the graph plotted 

between objective functions (Graph unavailability-maintenance costs plot) to have the 

high sensitivity of the other objective to that determined objective. And, there is the 

tendency that the part of Pareto-optimal solutions that is low in sensitivity for both 

objective functions is also low in sensitivity of decision variables to all objective 

functions, this idea is shown in Fig.3.26.  
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Fig 3.26. Part of sensitivity of decision variables to the objective functions 
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For part A in Fig.3.26, if consider the sensitivity of decision variables to objective 
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the sensitivity of decision variables to maintenance costs. Consequently, the 
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  Therefore, from the above discussions, the determination of the sensitivity of 

variation in one objective value to a variation in the other objective function value, as 

described in section 3.2, shows that it is sufficiently to represent the sensitivity in the 

viewpoint of robustness of sensitivity. 

 

3.9 Concluding remarks 

In this chapter, the multi-optimization method has been performed to optimize 

maintenance activities in a nuclear power plant’s HPIS in order to solve the trade-off 

problem between unavailability and maintenance cost.  

 

After considering of the problems that may occur in the global criteria method for the 

Pareto-optimal solution, the new index of sensitivity index with consideration of the 

robustness of sensitivity is proposed. The general methodology for compromising 

decision-making point between the SI and the conventional method is shown according 

to the user’s requirement. The promising solution obtained using the proposed 

methodology was compared with that obtained by the conventional method, and it was 

confirmed that the proposed methodology defines an optimal solution with low 

sensitivity. 

 

The sensitivity index for determination of the sensitivity of variation in one objective 

value to a variation in the other objective function value is shown that it is appropriate 

for expressing the robustness of the solution in the viewpoint of robustness of sensitivity, 

because the sensitivity of decision variable to the objective values at the obtained 

decision-making point is also confirmed sufficiently robust. 
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Chapter 4 
 

Decision making for the multi-objective 
optimization framework in the viewpoint of 
uncertainty 
______________________________________________________________________ 

 

4.1 Introduction and problems in the conventional method 

In the maintenance activities of a nuclear power plant, the objective usually involves 

more than one factor regarding, including low levels of system unavailability and low 

costs in maintenance activities. In order to optimize these conflicting objectives, the 

multi-objective optimization is usually applied.  Nevertheless, maintenance activities 

typically involve significant uncertainties such as those involving downtime and costs 

of maintenance. Therefore, some regions in the Pareto-optimal solutions may have the 

properties that are inappropriate due to the large scatter of the solutions or due to the 

lack of robustness of sensitivity. Thus, attention should increasingly be focused on a 

robust solution.  

 

Unfortunately, the concept of the conventional method [27] for determining the most 

promising solution from the Pareto-optimal solutions that was explained in chapter 2 
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might show insufficient robustness. Therefore, a methodology for selecting an 

appropriate solution with acceptable robustness is required. 

 

In this chapter, new indexes and methodology for the decision-making process in the 

multi-objective optimization framework under uncertainty are proposed according to 

user’s requirement. In considering robustness, evaluation of the scattering of solutions 

and a sensitivity analysis are also important. Thus, the robustness considered in the 

research includes the sensitivity of a variation in one objective value to a variation in the 

other objective function value, and the uncertainty intrinsic to each parameter. 

  

For considering the sensitivity of one objective value in relation to another objective 

value, the sensitivity index (SI), which has already been proposed in Chapter 3, is used. 

In addition, for considering the uncertainty intrinsic to each parameter, the 

decision-making process using a newly developed uncertainty index (UI) and decision 

index (DI) is formulated in this Chapter. 

 

4.2 The proposed methodology 

The proposed methodology to assist in decision-making so as to determine the most 

promising solution from the multi-objective optimization framework under uncertainty 

is illustrated in Fig. 4.1. 
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Fig. 4.1. Process of the proposed methodology 
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The process starts with defining the multi-objective optimization functions and 

uncertain parameters, and specifying the probability distribution. The simultaneous 

objectives that are considered in this research are the system unavailability and 

maintenance costs. In this problem, it is assumed that down time and maintenance costs 

have uncertainties. These parameters are expressed in terms of probability distribution 

functions. The distribution type of each uncertain parameter is assumed to follow a 

normal distribution. The Monte-Carlo [42,53] sampling technique is then utilized to 

generate sample points from the probability distributions, and the multi-objective 

optimization is performed in each iteration. After the specified number of Monte-Carlo 

iterations is reached, a variety of non-dominated sets are obtained.  

 

Thereafter, the robustness is investigated from three viewpoints as follows. 

(1) When the main target is to diminish the sensitivity of one objective with 

respect to another objective, the sensitivity index(SI), which is described in chapter 

3, is effective.  

 

(2) If the target is to diminish the deviation around the mean value for both 

objective values, the uncertainty index (UI) is more appropriate than SI.  

 

(3) Finally, if diminishing not only the sensitivity but also the deviation is to 

be considered, the decision index (DI) is appropriate.  

 

Detailed definitions of these indexes are given in the next subsection. 
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4.3 Definition of indexes 

 

4.3.1 Uncertainty index (UI) 

The uncertainty index (UI) is defined by the following equation, 

 

 

where %COV is the percentage of the coefficient of variation [53] = σ/µ･100.  

While σ is standard deviation and µ is the mean value. 

 

The uncertainty will be minimized when the %COV of objective function Fk and 

the %COV of the objective function Fj are in close proximity to the origin of the graph 

of relation between the %COV of each objective. Therefore, the closest position from 

the origin will be the point with the lowest uncertainty, as illustrated in Fig. 4.2. UI 

calculated by Eq.(4.1) shows the distance from the origin. Thus, the minimum value of 

UI gives the solution with the lowest uncertainty for all objectives. 

 

 

 

 

   

 

 

 

Fig. 4.2. The idea of the uncertainty index (UI) 
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4.3.2 Decision index (DI) 

The Decision index (DI) is defined as 

 

 

The general idea of DI is to consider together both the robustness of sensitivity and 

the robustness of uncertainty, the parameters of UI and SI (SI is described in chapter 3) 

are then considered simultaneously. The concept of DI is that in view of robustness, the 

ideal point (UI, |SI-1|) is (0.0, 0.0). If (UI, |SI-1|) is mapped into the normalized space, 

the closest position from the origin will be the point with the most robustness.  

 

In order to make both UI and |SI-1| carry equal weight, both index values should be 

normalized such that they fall in the range of 0~1. The region to be normalized will then 

be the intersection of the acceptable ranges of UI and SI. The acceptable ranges of SI 

and UI are flexible according to the demand of the user. The normalization is performed 

as 

 

Iin(x) in Eq.(4.3) is the normalized value for each index. Ii(x) is the index value to be 

normalized. Ii(x)min and Ii(x)max are the minimum and maximum values of Ii(x) in the 

acceptable range, respectively.  

 

After normalizing UI and |SI-1| using Eq.(4.3), the distance from the origin of each 

normalized index value is given by DI, as shown in Fig. 4.3. Therefore, the minimum 

value of DI gives the most appropriate solution with a positive compromise regarding 

both sensitivity and uncertainty.  
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Fig. 4.3. The idea of the decision index (DI) 

 

4.4 Procedure to determine the decision-making point in some conditions. 

As discuss in section 3.3(6) of chapter 3, in some conditions, the multi-objective 

optimizations are the constrained problems. With constraints, a part of the original 

Pareto-optimal region is not feasible and a new Pareto-optimal region emerges as shown 

in Fig.3.4 of chapter 3. The Pareto-optimal fronts of constrained multi-objective 

optimization are more complicated. Moreover, in some regions, the sensitivities of a 

variation in one objective value to a variation in the other of the Pareto-optimal 

solutions are almost constant. 

   

The following conditions are the conditions that may be occurred in the constrained 

multi-objective optimizations. The procedures for decision-making proposed in this 

chapter for applying to these cases are determined as follows. 

 

(1) When entirely of the feasible Pareto-optimal solutions have the almost constant 

SI and UI value. The example of this case is shown in Fig.4.4. For this case, because 

significant of sensitivity and uncertainty for each point on the Pareto-optimal curve are 
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almost same, thus the decision making point (point D in Fig. 4.4) should be the point 

that is closest to the ideal point (point Z*). And DI for this case is not necessary 

evaluated. 

 

 

 

 

    

  

Fig.4.4 Decision making for the Pareto-optimal solutions that SI and UI values are 

almost constant. 

 

(2) When SI values of entirely of the feasible Pareto-optimal solutions are almost 

constant, but UI values are rather changed, such as shown in Fig. 4.5, the decision 

making point (point D) should be determined by UI method. And DI for this case is also 

not necessary evaluated. 

 

 

  

 

 

 

 

Fig.4.5 When SI values of entirely of the feasible Pareto-optimal solutions are almost 

constant, but UI values are rather changed 
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(3) When entirely of the feasible Pareto-optimal solutions not have the SI = 1 

point, such as shown in Fig. 4.6, the decision making point should be determined by UI 

method.  

 

 

  

 

 

 

 

Fig.4.6 Decision making when the Pareto-optimal solutions not have the SI = 1 point. 

 

(4) When there is the point whose SI value is suddenly changed on the feasible 

Pareto-optimal curve. The examples of this case are shown in Fig.4.7-a, Fig.4.7-b  

 

 

 

 

 

 

 

 

   Fig.4.7-a      Fig.4.7-b 

Fig.4.7 Decision making for the Pareto-optimal solutions when there is the point whose 

SI value is suddenly changed. 
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For these cases, first, the UI and SI of each solution on the Pareto-optimal solutions 

are evaluated. After that, determine the point whose SI value is suddenly changed, while 

this point is non-robust and should not be selected. Thereafter, divide the Pareto-optimal 

curve into many parts from the SI point that is suddenly changed. 

 

After that, select the part of the Pareto-optimal curve for determining the 

decision-making point. If the sensitivity is considered more important, the select the 

part of the Pareto-optimal curve is the part that has the point whose SI value is closest to 

1.0. The decision-making point is the point whose SI value is closest to 1.0, or the point 

that has the smallest DI value. By the way, if these decision-making points by SI or DI 

are located close to the non-robust point whose SI value is suddenly changed, the 

decision-making point should then be the point closest to the ideal point (point Z* 

illustrated in Fig.4.7-a) of the selected part of the Pareto-optimal curve.  

 

If the uncertainty is considered more important, the select the part of the 

Pareto-optimal curve is the part that has the smallest value of UI. The point of smallest 

UI or DI is determined to be the decision-making point depending on user’s 

requirement. Nevertheless, the point whose SI value is suddenly changed is non-robust 

and should not be selected. Therefore, in the case that the decision-making point by UI 

is located close to this non-robust point, the decision-making point should be the 

decision-making point by DI. However, if the decision-making point by DI is also 

located close to this non-robust point, the decision-making point should be the point 

closest to the ideal point (point Z* illustrated in Fig.4.7-a) of the selected part of the 

Pareto-optimal curve. 
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However, for the case in Fig.4.7-b, which the UI and SI values are almost constant in 

the select part, the decision-making point is then the point closest to the ideal point 

(point Z* illustrated in Fig.4.7-b) of the selected part of the Pareto-optimal curve. And, 

the DI in the case of Fig.4.7-b is also not necessary evaluated. 

 

4.5 Results and Discussions  
In order to assure the effectiveness of the proposed methodology and indexes of 

decision making for the multi-objective optimization framework under uncertainty in 

this chapter, the case study of HPIS explained in section 3.4 of chapter 3 is applied. The 

HPIS is shown again here as the Fig. 4.8 for the sake of simplicity. 

 

 

 

 

 

 

 

 

Fig. 4.8 HPIS system [33]. 

 

The process of the proposed methodology of decision making for the multi-objective 

optimization framework under uncertainty starts with defining the multi-objective 

optimization functions and uncertain parameters, and specifying the probability 

distribution.  
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The considered objective functions of this study are the system unavailability and 

maintenance cost. The component unavailability and cost parameters shown in 

Table 3.1 of chapter 3 are used in the derivation of the objective functions. In this 

problem, it is assumed that down time and maintenance costs have uncertainties. These 

parameters are expressed in terms of probability distribution functions. The distribution 

type of each uncertain parameter is assumed to follow a normal distribution. Then, the 

downtime parameters t and d and the maintenance cost parameters Cht and Chc in 

Table 3.1 of chapter 3 are the mean values.  

 

To investigate the effectiveness of the methodology, the three cases of uncertainty 

shown in Table 4.1 are examined. 

 

Table 4.1. The investigated cases. 

 

 

 

 

 

 

 

 

Then, in order to optimize the surveillance test program in the maintenance activities 

of this HPIS system, we assume that the system components have been classified into 

two surveillance test interval groups; each group will be tested in the same interval, as 

shown in Table 4.2. The symbols in Table 4.2 are shown in Fig. 4.8. 
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T 1 V1, V2, PA, PB, PC

T 2 V3, V4 , V5, V6, V7
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 x = {T1, k1}      (4.4)

Table 4.2. Groups of test intervals. 

 

 

 

 

 

Test intervals for each group are constrained as the follows: 

 

 

 

  

Consequently, the maintenance activities optimization of this system has decision 

variables set, x, as shown in Eq.(4.4) 

     

 

After the objective functions of the unavailability function and cost function are 

derived as explained in the chapter 3 by using the related component unavailability and 

cost data of maintaining the system that are shown in table 3.1 of chapter 3, the 

multi-objective optimization is applied by using the parameters shown in table 4.3 with 

Monte-Carlo iteration of 5000 times to get the non-dominated sets of Pareto-optimal 

solutions. 
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Table 4.3. Parameters used in the multi-objective optimization 

 

 

 

 

 

 

 

 

 

 

The results of the variety of non-dominated sets of Pareto-optimal solutions for 

case 1 to case 3 for minimizing both unavailability and maintenance costs are shown in   

Fig. 4.9-a, Fig. 4.10-a and Fig 4.11-a respectively. Thereafter, the graph of % COV of 

costs and % COV of unavailability plotted for each point of mean value of the 

Pareto-optimal solutions for case 1 to case 3 is shown in Fig.4.9-b, Fig.4.10-b and 

Fig.4.11-b respectively. 

 

The following points shown in Fig.4.9-4.11 are defined as follows. 

Point B represents the decision making point by UI method. 

Point C represents the decision making point by DI method. 

Point D represents the decision making point by SI method. 

Point E represents the decision making point by conventional method. 

 

 

Parameters Values

Encoding mechanism

Population size

Real-parameter

200

Generation numbers 20

Crossover probability 0.6

Mutation probability 0.01

Monte-Carlo iteration number 5,000
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Fig.4.9-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 1.   

 

 

 

 

 

 

 

 

 

 

 

Fig.4.9-b. % COV of maintenance costs - % COV of unavailability plot for each point 

of the Pareto-optimal solutions for the investigated case 1.   
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Fig. 4.10-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 2.   

 

 

 

 

 

 

 

 

 

 

 

Fig.4.10-b. % COV of maintenance costs - % COV of unavailability plot for each point 

of the Pareto-optimal solutions for the investigated case 2.   
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Fig. 4.11-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 3.  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.11-b. % COV of maintenance costs - % COV of unavailability plot for each point 

of the Pareto-optimal solutions for the investigated case 3.   
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The solutions in Fig. 4.9-4.11 suggest that the solutions around points A and F are 

not appropriate for carrying out the maintenance activities because there are high 

sensitivities of variation in one objective function value in relation to variation in the 

other. Moreover, there are high uncertainties in either objective around these points. To 

clarify the characteristics of robustness around these points by numerical values, the 

results data around points A, D, and F are summarized in Table 4.4. 

 

Table 4.4. The objective mean values of the Pareto-optimal solutions with the 

corresponding %COV of each objective around points A, D, and F 
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7.13

5408

3862

Cost
cost

%COV 
of

Objective mean 
values

3.44

3.65

16.14
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cost
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Let us consider the characteristic of robustness. First, the robustness of sensitivity is 

determined around each point from Table 4.4 as follows. 

 

Around point A: Around the unavailability value of 2.43E-5, the small difference in 

the unavailability value of only 1.E-6 causes the maintenance cost optimization value to 

have a large variation of $1546 ($5408-$3862). Thus, there are high sensitivities of 

unavailability value in relation to cost value around this point. In contrast, there are low 

sensitivities of cost value in relation to unavailability value around this point. 

 

On the other hand, around point F: A slight variation of only $55 ($799-$744) in the 

maintenance costs causes the large difference in unavailability optimization value up to 

2.1x10-5 (1.73E-4-1.52E-4). This means that there are high sensitivities of cost value in 

relation to unavailability value around this point. Nevertheless, there are low 

sensitivities of unavailability value in relation to cost value around this point. 

 

However, around point D: Around the unavailability values of 3.79E-5, a small 

difference in the unavailability value of only 1.E-6 causes the maintenance cost 

optimization value to have a small variation of only $55 ($2082-$2027). Thus, in this 

zone, there are low sensitivities for all of objectives.  

 

Additionally, data in Table 4.4 and Fig.4.9-4.11 also show the high %COV of costs 

around the point A. And there is a high %COV of unavailability around the point F. 

Thus, there are high uncertainties for either objective at these points. The point B in 

Fig.4.9-b, Fig.4.10-b and Fig.4.11-b show the point that is closest to origin of the graph 

of % COV of costs and % COV of unavailability plotted (at each point of the mean 
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value of the Pareto-optimal solutions). Therefore, the point B is the points that have the 

lowest uncertainty for all objectives (this is the idea of the UI that is described in 

section 4.3.1).  

 

From Figs.4.9-4.11, we can also see that the robustness in view of sensitivity and 

uncertainty vary in each region of the Pareto-optimal solutions and are depend on each 

case. Therefore, considering the decision-making solutions by using only the data at 

mean values of the Pareto-optimal solutions, such as the conventional method or using 

the sensitivity index, may not sufficient for being determined in the viewpoint of 

robustness of uncertainty. 

  

Thus, a methodology for selecting an appropriate most promising solution from the 

multi-objective optimization framework under uncertainty is extremely important to the 

robustness of the system. Therefore we propose such a methodology in section 4.2.  

 

To verify the suitability of the solutions by the proposed methodology, promising 

solutions for all cases obtained by the method of each proposed index (UI, SI, DI), the 

corresponding index value, and the %COV of each objective are shown in Table 4.5. 
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Table 4.5. The promising solutions obtained by each proposed index, the corresponding 

index value, and the %COV of each objective 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SI method 3.79E-5 2082 7.14

2.87E-5 2916 6.10

3.49E-5 2267 6.82

UI method

DI method
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by
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1.59E-6
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4.56

UI
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DI
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Mean
cost ($)
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SI method 3.79E-5 2082 7.70
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UI method

DI method
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0.90
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6.92

Solution 

by

Solution 

by

Mean
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The solution by each method (SI, UI, and DI and method) shown in Table 4.5 is 

represented as point B (SI method), point C (UI method), point D (DI method) in 

Fig. 4.9 – Fig. 4.11. The results in Table 4.5 indicate that the proposed method described 

in section 4.2, represented by SI, UI, and DI, gives the robust solutions according to the 

analyst’s demands.  

 

For the decision-making in the viewpoint of robustness of sensitivity, the promising 

solution that is determined from SI is calculated from the mean values of the 

Pareto-optimal solutions. The unavailability value at SI=1.0 is located around point D of 

Table 4.4. Thus, it is confirmed that at SI=1.0 has low sensitivities for both objectives.  

 

Furthermore, when considering the solutions from the perspective of both objective, 

the %COV of the promising solutions determined using UI for all cases are lower than 

the promising solutions determined by another index. Nevertheless, the solutions from 

Table 4.5 also show that the %COV of both objectives at the solutions determined by 

using SI in all cases are rather larger than the %COV values at the promising solutions 

determined from UI. In contrast, SI values at the promising solutions determined using 

UI are rather remote from the value of 1.0, particularly in case 1. These results indicate 

that, in most cases, the promising solution with the lowest deviation is not necessarily 

the solution to give the best sensitivity, or vice versa. Therefore, to achieve a 

compromise between sensitivity and uncertainty, the DI method is important. The 

acceptable range to calculate DI is the intersection of the acceptable range of UI and SI. 

In this paper, the range of 5.15.1/1 ≤≤ SI  is used as the acceptable range for the 

robustness of sensitivity, i.e. the range in which the variation in one objective is not 

greater than 1.5 times the variation in the other. For the acceptable range of UI, the 
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values are determined such that the %COV values of both objectives are less than 10%. 

As such, the promising solutions determined from DI in Table 4.5 indicate that both SI 

and UI values are appropriate for all 3 cases. Therefore, the DI method gives the best 

compromise solution between sensitivity and uncertainty.  

 

Thus, the proposed methodology can be applied to determining the most promising 

solution from the Pareto-optimal solutions according to the user’s requirements. If the 

robustness of sensitivity is considered to be most important, the sensitivity index is 

appropriate. In contrast, if the robustness of uncertainty is the most important, the 

uncertainty index is appropriate. However, if a promising solution with the positive 

compromise on both sensitivity and uncertainty is required, the decision index is 

appropriate.  

 

Moreover, the index values at the solutions obtained by the proposed methodology 

are also compared with those by the conventional method. The promising solutions for 

all cases obtained by the conventional method, the corresponding index value, and 

the %COV of each objective are shown in Table 4.6. 

 

The solution obtained by the conventional method in Table 4.6 shows that the SI 

values of this solution are far apart from the value of 1.0. In addition, the UI values of 

this solution are rather large. Therefore, the solution by the conventional method shows 

insufficient robustness. The proposed methodology can therefore provide more 

appropriate solutions than the conventional method when the attention is focused on the 

robustness. 
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Table 4.6 The promising solutions for all cases obtained by the conventional method, 

the corresponding index value, and the %COV of each objective 

 

 

 

 

 

  

 

 

 

 

4.6 Discussion for using COV in the uncertainty index 

  In this research, we use the coefficient of variation (COV) to represent the uncertainty 

of results because the coefficient of variation is non-dimensional. The idea of the 

uncertainty index in the Eq. (4.1) shows that without using the non-dimensional values, 

the uncertainty of one objective function may make the more large effect to the 

uncertainty index because of their large order in values. For example, suppose that we 

use standard deviation (σ) to represent the uncertainty of results. The order of standard 

deviation for unavailability is around 10E-5 ~ 10E-7. But the order of standard 

deviation for maintenance costs is around $10 ~ $1000. Therefore, if these large 

differences in the order of the standard deviation are applied to the uncertainty index in 

Eq. (4.1), the effect of uncertainty in unavailability will not have any meaning in the 

calculation. Therefore, in order to solve this difference in order of the dimensional, the 

non-dimensional parameter COV is chosen for uncertainty index.  

Case 1

Case 2

Case 3

Case UI DI
Mean

unavail-
ability

Mean
cost ($)

5.67E-5 1480 8.20

5.67E-5 1480 8.41

5.67E-5 1480 11.74

SI

1.35

1.35

1.35

1.07

0.97

1.09

3.72E-6

3.85E-6

5.39E-6

6.56

6.79

9.51

%COV 
of

unavail-
ability

standard
deviation

of 
unavail-
ability

%COV 
of

cost

standard
deviation

of
cost

4.92

4.97

6.89

73

74
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lityunavailabi

lityunavailabi

σ
σ

 of tiveRepresenta
 lity unavailabifor y uncertaint ldimentionaNon =−   (4.5)

Costs

Costs
σ

σ
 of tiveRepresenta

  costsfor y uncertaint ldimentionaNon =−              (4.6) 

However, because COV = σ/µ, therefore the problem will occur when the mean value 

(µ) is equal to zero. But, for the optimization of surveillance test in this research, if 

unavailability = zero this means that the failure will not occur, which is the impossible 

condition. In addition, it is also impossible that the maintenance costs = zero. Therefore 

using COV is applicable for the surveillance test optimal problem. 

 

  By the way, COV is the measure of relative dispersion from its mean value. If the 

user pays attention to the dispersion without relation to mean value, another 

non-dimensional uncertainty values are required. In order to make non-dimensional 

uncertainty values without relation to mean value, the standard deviation of each 

objective function is divided by some fixed values for the entirely of the Pareto-optimal 

solutions. These fixed values for both objective functions should have the same 

significant of uncertainty. At the solution whose COV values of both objective functions 

are equal, their significant of uncertainties are assumed approximately equivalent. 

Therefore, the standard deviations at the point that the COV of both objective functions 

are equal are determined as the representation of fix value to make uncertainty values 

being non-dimensional without relation to mean value as the following equations.   

 

 

 

 

While, representative of σunavailability is the standard deviation of unavailability at COV of 

unavailability equal to COV of costs. 

Representative of σcosts is the standard deviation of costs at COV of unavailability equal 

to COV of costs. 
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The results of decision-making point for case1 to case3 obtained by the uncertainty 

indexes (UI) using the non-dominated terms in Eq.(4.5) and Eq.(4.6) are shown in 

Fig.4.12-a, Fig 4.13-a and Fig.4.14-a, respectively. The results of decision-making point 

obtained by the uncertainty indexes (UI) using the COV are also compared in those 

figures. 

 

Thereafter, the graph of standard deviation of costs and standard deviation of 

unavailability plotted for each point of the Pareto-optimal solutions for case 1 to case 3 

are shown in Fig.4.12-b, Fig.4.13-b and Fig.4.14-c respectively. 

 

The following points shown in Fig.4.12-4.14 are defined as follows. 

Point B represents the decision making point by by UI method using the non-dominated 

terms of COV. 

Point D represents the decision making point by SI method. 

Point I represents the decision making point by UI method using the non-dominated 

terms in Eq.(4.5) and Eq.(4.6). 
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Fig. 4.12-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 1 and the decision making by each method.  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.12-b.Standard deviation of maintenance costs-Standard deviation of unavailability 

plot for each point of the Pareto-optimal solutions for the investigated case 1   
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Fig. 4.13-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 2 and the decision making by each method.  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.13-b.Standard deviation of maintenance costs-Standard deviation of unavailability 

plot for each point of the Pareto-optimal solutions for the investigated case 2.   
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Fig. 4.14-a. The variety of non-dominated sets of Pareto-optimal solutions for the 

investigated case 3 and the decision making by each method.  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.14-b.Standard deviation of maintenance costs-Standard deviation of unavailability 

plot for each point of the Pareto-optimal solutions for the investigated case 3.   
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  The comparisons of the decision making point shown in Fig.4.12-Fig.4.14 are 

numerically shown in Table 4.7. 

 

Table 4.7. The decision making point obtained by UI method using non-dominated 

terms in Eq.(4.5)-Eq.(4.6) compare with UI method using COV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SI method 3.79E-5 2082

2.87E-5 2916

3.31E-5 2402

UI method
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Solution 

by

Case
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  For the results in Fig. 4.12 – Fig.4.14, point I is the decision making point using 

non-dominated termed in Eq.(4.5)-Eq.(4.6), which are non-dimensional uncertainty 

values without relation to mean value. And, point B is the decision-making point using 

COV. 

 

With Recognize that the definition of COV is σ/µ, then there is the effect of the 

difference in mean values (µ) between each point of the Pareto-optimal solutions. 

Consequently, the results in Fig. 4.12 – Fig.4.14 and Table 4.7 are shown that the result 

at point B and point I are not same.  

 

Thus, the non-dominated termed in Eq.(4.5)-Eq.(4.6) are also the another alternative 

when the user requires the non-dimensional uncertainty values without relation to mean 

value. However, if the analyst consider that relative dispersion from its mean value is 

also important, the non-dominated termed using COV in Eq.(4.1) is preferred. The 

example of the case that there is a significance of relative dispersion from its mean 

value, such as, the case that there is the same or little change in the standard deviation 

but the mean value are change rapidly; i.e., there is significant between a point that have 

µ = 1000, σ =1 and a point that have µ = 1, σ =1, etc. 
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4.7 Discussions for the conditions that the proposed methodology is effective. 

In section 4.5 and 4.6, the results show that the proposed methodology can be applied 

to determining the most promising solution from the Pareto-optimal solutions according 

to the user’s requirements. However, in some cases such as the investigated case2 and 

case3 shows that only SI proposed in chapter 3 is efficient. The results in Fig 4.10 and 

Fig 4.11 of the investigated case2 and case3 show that the decision-making point 

represented as point B (SI method), point C (UI method) and point D (DI method) are 

close together. Therefore in these cases only SI is enough for represent the decision 

making point in the viewpoint of robustness. Nevertheless, in some cases, such as the 

investigated case 1, the result in Fig 4.9 shows that the decision-making point 

represented by point B (SI method), point C (UI method) and point D (DI method) are 

apart together. The data in Table 4.5 for this case also show that the deviation of the 

decision-making point by SI method (point D) is rather large when compares with the 

deviation of the decision-making point by UI method (point B). Thus, in this case, the 

proposed methodology in this chapter is effective. These show that, in the viewpoint of 

robustness of uncertainty, the proposed methodology in this chapter is required to be 

evaluated before determining that the proposed method in this chapter is effective or 

not.  

 

In this section we discuss for the conditions that the proposed methodology in this 

chapter is effective. The example conditions that the proposed methodology in this 

chapter is effective are shown in Fig.4.15 and Fig.4.16. 
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Fig. 4.15 The example condition that the proposed methodology in this chapter is 

effective. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 The example condition that the proposed methodology in this chapter is 

effective. 

SI = 1

Unavailability

M
ai

nt
en

an
ce

 c
os

ts
 ($

)

G

H

G – Decision-making point by UI
H – Decision-making point by SI

 

Unavailability

M
ai

nt
en

an
ce

 c
os

ts
 ($

)

H

G

SI = 1

G – Decision-making point by UI
H – Decision-making point by SI

 



 117

For the example condition in Fig. 4.15 and Fig.4.16, point G represents the 

decision-making point by UI, and point H represents the decision-making point by SI. In 

these conditions, the decision-making point by SI (point H) have the large deviation of 

uncertainty and rather separate from the decision-making point by UI (point G). 

However, the decision-making point by UI (point G) is high in sensitivity. Thus, the 

example condition in Fig.4.15 and Fig.4.16 shows that the proposed methodology in 

this chapter is effective. 

 

For the example condition in Fig.4.15, this condition may occur when the 

uncertainty parameters changed in some ranges. For this condition, the non-dominated 

sets of Pareto-optimal solutions shows the complicated shape. Therefore, results of 

sensitivity and the deviation of uncertainty are also complicated through the 

Pareto-optimal curve. Of course, the proposed methodology is required and is very 

effective for applying to this case.   

 

For the example condition in Fig.4.16, this condition may occur when uncertainty 

parameters in one objective have the very smaller in deviation than the other. And those 

uncertainty parameters, which are very small in deviation, have not a large effect to the 

Pareto-optimal solutions (this means that those parameters do not make the large scatter 

in the Pareto-optimal solutions).  

 

However, the investigated case 2 is also determined at uncertainty parameters in one 

objective have the very smaller in deviation than the other. The investigated case 2 is 

determined at %COV of unavailability parameters are larger to 10% and %COV of 

maintenance parameters are only 1%. But the maintenance cost parameters do make the 
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large scatter in the Pareto-optimal solutions because the point F in Fig.4.10-a shows the 

rather large in scattering of maintenance cost values although its %COV is only 1%. 

Therefore, the proposed methodology may not be effective so much when it is applied 

to the investigated case 2. 

 

The investigated case 1 in Table4.1 confirms that the proposed methodology in this 

chapter is effective with the reason of the example condition in Fig.4.16. The 

investigated case 1 is determined at %COV of unavailability parameters are only 1% 

and %COV of maintenance parameters are large to 10%. Moreover, the unavailability 

parameters do not make the large scatter in the Pareto-optimal solutions because the 

point A in Fig.4.9-a shows the very little in scattering of uncertainty values. Therefore, 

the proposed methodology is effective when it is applied to the investigated case 1.  

 

The discussions in this section 4.7 show that, in order to obtain the decision 

making point in the viewpoint of robustness, the proposed methodology in this chapter 

is required. Because without applying the proposed methodology, we cannot know in 

advance that only the sensitivity index, which is proposed in chapter 3, is sufficient 

when the robustness of uncertainty is also required. 
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4.8 Conclusion remarks 

In this chapter, the multi-optimization method has been performed to optimize 

maintenance activities in a nuclear power plant’s HPIS in order to solve the trade-off 

problem between unavailability and maintenance costs. Nevertheless, maintenance 

activities typically involve significant uncertainties such as those involving downtime 

and costs of maintenance. Thus, in this chapter the new methodology for determining 

the most promising solution from a multi-objective optimization framework under 

uncertainties was proposed according to the user’s requirements.  

 

The promising solution obtained using the proposed methodology was compared 

with that obtained by the conventional method, and it was confirmed that the proposed 

methodology defines an optimal solution with low sensitivity at adequate robustness. 
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Chapter 5 
 

Risk-based Inservice Testing Policy using the 
Multi-Objective Optimization with Robustness 
____________________________________________________________________ 

 

5.1 Introduction 

 

 

 

 

 

 

 

 

Fig.5.1 Example case shows an unsatisfactory Pareto-solution. 

 

The multi-objective optimization is usually performed in order to solve the 

conflicting objective in the maintenance activities. From chapter 3 and chapter 4, in 

order to attain the robust solution in surveillance test, the multi-objective optimization is 

considered with the robust solution using the decision-making based on robustness. In 

addition to the application of the multi-objective optimization with robustness, the 

management of surveillance test interval groups is also significant for achieving the 

more satisfactory Pareto-optimal solutions in the risk management point of view, for 
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example as illustrated in Fig.5.1. The following subsection shows why the management 

of surveillance test interval groups is important for improving the Pareto-optimal 

solutions. 

 

5.1.1 Significance of RBM for improving the Pareto-optimal solution. 

One of the important parameters for the surveillance test is the surveillance test 

interval (STI), which is adopted as the decision variable for the optimization process. In 

the surveillance test, the system components have been grouped into different test 

strategies. All components in the same group are determined as the same surveillance 

test interval. Therefore, the management of the surveillance test interval groups is also 

significant for improving the maintenance activities. In order to manage the most 

satisfactorily surveillance test interval groups in the viewpoint of risk, the optimization 

including prioritization of maintenance should be treated.  

 

The risk-based maintenance (RBM) is the method for determining the priority of the 

maintenance using components risk. The RBM can be applied for managing the 

surveillance test interval groups. For components in the standby system, such as pumps 

and valves, risk-based maintenance for testing is called as risk-based inservice 

testing [3]. However, the methodology for updating multi-objective optimization by 

risk-based inservice testing has not been reported, although both of the multi-objective 

optimization and RBM are important.  

  

In chapter 3 and chapter 4, the surveillance test interval groups are fixed by did not 

manage the prioritization for testing. In this chapter, we consider the prioritization for 

surveillance test as shown in Table.5.1. The surveillance test interval T 1, T 2, T 3 are 
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considered as the decision variables in the optimal process. T 1 represents the shortest 

test interval, T 2 represents the medium one and T 3 represents the longest one. Then, the 

high-risk components should be tested more frequently than medium and low risk 

components.  

 

Table. 5.1 The prioritization of test interval groups for surveillance test.  

 

 

 

 

 

Though, ASME has already developed the guideline of risk-based inservice testing [9], 

the following subsection shows how this ASME method is not sufficient in determining 

the most optimal test interval groups based on risk and robust consideration.  

 

5.1.2 Problem in the risk-based inservice testing by ASME method 

 

 

  

 

 

 

 

 

Fig.5.2 RAW/FV Quadrant graph of risk by ASME method [9]. 

T 1 High risk components

T 2 Medium risk components

T 3 low risk components
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As describe in chapter 2, the main idea of component important ranking by ASME is 

determined by using the combination of importance measure. That is the Fussel-Vesley 

(FV)[35] and Risk Achievement Worth (RAW)[35] matrix. The ranking is divided at the 

fixed value of FV and RAW into four quadrants as shown in Fig.5.2. The fix values of 

FV and RAW defined by ASME for dividing quadrant of matrix are 0.001 and 2 

respectively.  

 

From Fig.5.2, components in quadrant A may be candidates for no or relaxed testing. 

Components in quadrant C should have focused and effective testing. While, infrequent 

test are considered for components in quadrant B and D. 

 

Nevertheless, by fixing the values of FV and RAW is not flexible enough. For 

example as the component A and B in the case of FV-RAW matrix in Fig.5.2, the risk 

significance of the components may be located in the same risk significance of test 

interval group because their FV and RAW values are larger than the fixed values, 

although there are extreme differences in their values. Moreover, the ASME method has 

not clearly presented the method to revise risk-ranking process. Therefore, the ASME 

method may not clearly give the most optimal surveillance test interval groups for the 

surveillance test based on risk consideration.  

 

In addition, the method by ASME does not consider about the multi-objective 

optimization and robustness. Thus, the obtained test interval groups by ASME may not 

be appropriate in the viewpoint of robustness. 
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The purpose of this paper is to propose a methodology for determining the robust 

surveillance test with the most optimal surveillance test interval based on risk based 

inservice testing. The methodology for applying a multi-objective optimization to 

risk-based inservice testing is proposed in the following section to determine the most 

optimal test interval based on risk consideration. In order to obtain the robust solution, 

the decision-making for the multi-objective optimization solution based on robustness 

proposed in chapter 3 and chapter 4 is preferred depending on user’s requirement. 

 

In this chapter, the solution obtained by the proposed methodology is also compared 

with that by the risk-based inservice testing method of ASME and also compared with 

that by the typical surveillance test by the U.S. nuclear regulatory commission 

(USNRC) [58]. It is confirmed that the obtained optimal solution shows satisfactory 

solution based on risk consideration with adequate robustness. 
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5.2 The proposed methodology 

The proposed methodology for applying the multi-objective optimization to 

risk-based inservice testing is illustrated in Fig. 5.3. The methodology starts with 

defining the considered standby system. The inventory of the system is then performed 

to determine the unavailability parameters, cost parameters of each component and the 

initial surveillance test interval groups of components. The multi-objective optimization 

is then performed at the initial surveillance test interval groups of components. 

 

Because the Pareto-optimal solutions consist of a number of solutions, the most 

appropriate solution from the Pareto-optimal solutions with lowest sensitivity is then 

selected to be the representative of the Pareto-optimal solutions. We already proposed in 

the chapter 3 that this point can be easily identified as the point of sensitivity index (SI) 

SI = 1. The selected solution is then used to construct the proposed risk matrix that 

assist in categorizing the risk significance of the components into first approximate test 

interval groups. Thereafter, the revision of risk ranking is performed in order to update 

the multi-objective optimization result. The revising risk ranking and the 

multi-objective optimization process are repeated to improve the multi-objective 

optimization results until the test interval groups converges. By this updating process, 

the optimal surveillance test interval groups based on risk consideration are obtained 

and then provide the satisfactorily Pareto-optimal solutions in the view point of risk 

management. Finally, in order to obtain the surveillance test planning that is appropriate 

for robustness in maintenance activities, the decision-making based on robustness 

proposed in chapter 3 and chapter 4 is used based on user’s requirement.  
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Fig. 5.3. Process of the methodology for risk-based inservice testing policy using the 

multi-objective optimization with robustness. 



 127

Consequence system unavailability (Consequence)

un
av

ai
la

bi
lit

y 
of

 th
e 

co
ns

id
er

ed
 

co
m

po
ne

nt
 (L

ik
el

ih
oo

d)

Zone 1 Zone 2 Zone 3

low medium high

lo
w

m
ed

iu
m

hi
gh

 

5.3 The proposed risk matrix 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. The proposed risk matrix. 

 

The concept of risk usually consists of the likelihood of the failure and the 

consequence of the failure for the interested part. In the standby system, the 

unavailability is a very important parameter. Therefore, this research corresponds the 

likelihood of the failure to the unavailability of each component.  

 

In addition, the consequence of a component’s failure to the system unavailability is 

defined in reference of the concept of importance measure of the Risk Achievement 

Worth (RAW)[35]. As described in section 2.4.4 of chapter 2, the RAW is defined as the 

following equation. 

 

 )(
)1(

RAW
baseU
iUU =

=         (5.1)
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where  U(Ui = 1) is the increased system unavailability level when the considered 

component i is assumed to fail or unavailability of that component equals 1.0.  

 U(base) is the present system unavailability level. 

 

In this research, in order to make the parameters used in the proposed risk matrix 

easy to assist in examining how the risk level is improved quantitatively, we correspond 

the consequence of a component’s failure to the system unavailability as U(Ui = 1).    

 

Both the consequence of each component to the system and the present unavailability 

of each component are considered on the risk matrix simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.5 The definition of the qualitative low-medium-high category of each axis. 
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The likelihood and the consequence are then plotted on the risk matrix as shown in 

Fig.5.4. In order to define the qualitative low-medium-high category for each axis of the 

proposed risk matrix, the maximum and minimum values of the likelihood and 

consequence from all components are used to be the upper and lower bound of the 

ranges for creating the risk matrix. Each axis is then divided into 3 equally category of 

low, medium and high category for each axis of risk matrix as illustrated in Fig.5.5. 

Thereafter, the risk significance for surveillance test is considered as shown in Fig.5.4.  

 

In Fig.5.4, the risk significance is divided into 3 zones of surveillance test interval T 1, 

T 2, T 3. The T 1, T 2, T 3 are considered as the decision variables in the optimal process. 

T 1 represents the shortest test interval, T 2 represents the medium one and T 3 represents 

the longest one. The risk significance for each divided zone is considered as follows:  

 

1) Zone 1: The level of risk significance for the components that locate in this zone 1 

is the highest risk significance components when compared with the others. Therefore, 

the components located in this zone should be tested most frequently. The surveillance 

test interval for the components in this zone 1 is then the shortest one allocated to T 1 in 

this research. This zone 1 is considered as an unacceptable zone for the operation.  

 

2) Zone 2: The level of risk significance for the components that locate in this zone 2 

is the medium risk significance components when compared with the others. The 

surveillance test interval for the components in this zone 2 is the medium test interval 

allocated to T 2 in this research. This zone 2 is considered as an acceptable zone for the 

operation. 
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3) Zone 3: The level of risk significance for the components that locate in this zone 3 

is the lowest risk significance components when compared with the others. The 

surveillance test interval for the components in this zone 3 is the longest one allocated 

to T 3 in this research. This zone 3 is considered as an acceptable zone for the operation. 

 

5.4 Revision of the risk matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.6 The proposed revising risk matrix 

 

Since only one of risk ranking process is not sufficient to find the most optimal 

groups for surveillance test intervals, the revision of the risk matrix is then required.  
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In order to revise the risk ranking, the risk matrix (for the solution of the latest 

obtained test interval groups) is created again. After that, the interested components to 

be revised in the test interval groups are treated according to the following 2 cases:  

 

1) 1st case of the revised components:  

The components, which are still located in zone 1 even after the treatment, are 

considered as the highest risk significant components. An example of the components to 

be revised as this case is shown as the component A in Fig.5.6 These components will 

be revised by shortening the test interval. 

 

2) 2nd case of the revised components:  

The components, which are still located in zone 3, are considered as components that 

can be further disregarded in the maintenance activities. An example of the components 

to be revised as this case is shown as the component B in Fig.5.6. These components 

will be revised by extending the test interval. 

 

The objective of revising the risk ranking is to improve the risk significance of 

components until they are converged at the optimal test interval groups based on risk 

consideration, whose risk significances should fall into the medium risk significance 

finally. The medium risk significance that is shown in zone 2 is not too conservative 

and not too risks significance. 
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5.5 Decision making for the multi-objective optimization 

   Because the Pareto-optimal solutions consist of a number of solutions, there must be 

some decision-making for the multi-objective optimization in order to select the point to 

be improved in the proposed methodology. In order to achieve robustness of the solution, 

the proposed indexes and methodologies in chapter 3 and chapter 4 are preferred to be 

the decision-making in the proposed methodology in this chapter. 

 

5.5.1 Decision-making or Pareto-optimal solutions in the risk ranking and revising 

risk ranking step 

The decision-making point for the multi-objective optimization is important because 

in some initial cases there are some points in the Pareto-optimal solutions may not be 

appropriate to be selected for improvement.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7.  Example of an initial case whose area overlap with the most efficient 

Pareto-optimal solutions. 
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In some initial cases, it is possible that some regions in the initial Pareto-optimal 

solutions overlap with the most efficient Pareto-optimal curve for example as shown in 

Fig.5.7. If the point in these regions is selected for improving, the obtained test interval 

groups may not be the most optimal test interval groups for the entire Pareto-optimal 

solutions because the points in these regions cannot be further improved. Nevertheless, 

it is impossible to know the most efficient Pareto-optimal solutions from the first stage 

of the simulation. Therefore, some decision making index is required in order to assist 

in selecting the point that is located in the non-overlapping regions. 

 

For the multi-objective optimization of maintenance activities, there is the lower 

limit line of each objective function represented as dot lines in Fig. 5.7. The more Pareto 

curve is improved, the more Pareto curve approach to these limited lines. However, the 

results that approach to these limited lines are high sensitivity of one objective value in 

relation to another objective value. Then, the most efficient Pareto-optimal curve should 

have the extensive areas that are high in sensitivity. 

 

Therefore, the suggest point, which should be selected, is the point that has the 

lowest sensitivity, because there is the most highly probability that this point will not 

overlap with the most efficient Pareto-optimal curve. Then, the sensitivity index has 

been proposed in the chapter 3 is appropriate because it can assist in determining the 

lowest sensitivity solution in the Pareto-optimal curve. 
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5.5.2 Decision-making for the obtained final result of Pareto-optimal solutions 

In order to obtain the surveillance test planning with robustness, the selection of the 

final result of Pareto-optimal solution should be paid attention on the robustness of the 

determining solution. Therefore, the proposed indexes and methodology of 

decision-making for the multi-objective optimization solutions in the viewpoint of 

robustness in chapter 3 and chapter 4 are preferred as following case. 

 

1) When the robustness of sensitivity is considered important, the sensitivity index 

(SI) and methodology in chapter 3 is preferred. 

 

2) When the robustness of uncertainty is considered important or there are high 

uncertainty in the operating system, the proposed uncertainty index (UI) and 

proposed methodologies in chapter 4 is preferred. 

 

3) When not only the robustness of sensitivity, but also the robustness of 

uncertainty is considered important, the proposed decision index (DI) and 

proposed methodologies in chapter 4 is preferred. 
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5.6 Results and Discussions 

In order to assure the effectiveness of the proposed methodology in this chapter, the 

case study of HPIS explained in section 3.4 of chapter 3 is applied. The HPIS is shown 

again here as the Fig. 5.8 for the sake of simplicity. 

 

 

 

 

 

 

 

 

Fig. 5.8 HPIS system [33]. 

 

Table 5.2. The initial surveillance test interval groups conditions of investigated cases 

before performing the risk-based inservice testing. 

 

 

 

 

 

 

 

 

 

Case T 1 T 2 T 3

1

2

3

4

All components -

V3, V4, V5, V6, V7V1, V2, PA, PB, PC

-

-

V2 V1, PA, PB, PC V3, V4, V5, 
V6, V7

V1, V2, V3, V4, V5, 
V6, V7

PA, PB, PC -
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 x = {T 1, k1, k2}      (5.2)

In order to investigate the effectiveness of the proposed methodology, four 

investigated cases of the initial surveillance test interval groups before performing the 

risk-based inservice testing to the HPIS in Fig.5.8 are shown in Table 5.2. The symbols 

using in Table 5.2 are shown in Fig.5.8.  

 

While variables T 1, T 2, T 3 in Table 5.2 are the surveillance test interval groups as 

described in section 5.3. The T 1, T 2, T 3 are considered as the decision variables 

constrained as follows, 

 

 

  

 

 

Consequently, the maintenance activities optimization of this system has decision 

variables set, x, as shown in Eq.(5.2) 

  

  

 

The results of risk ranking and revising risk ranking of the processes in the proposed 

methodology for the investigated case 1 – case 4 in Table 5.2 are shown in 

Fig. 5.9 – Fig 5.12 respectively.  
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For investigated case 1: 
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Fig. 5.9. Risk matrix and revising risk matrix for investigated case 1. 
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For investigated case 2: 
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Fig. 5.10. Risk matrix and revising risk matrix for investigated case 2. 
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Fig. 5.11. Risk matrix and revising risk matrix for investigated case 3. 
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For investigated case 4: 
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Fig.5.12. Risk matrix and revising risk matrix for investigated case 4. 
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The proposed methodology started with defining the standby system, which is the 

HPIS shown in Fig. 5.8. The HPIS has the unavailability parameters and cost 

parameters of each component as shown in Table 3.1 in chapter 3. After that, the 

multi-objective optimization is performed for the initial surveillance interval test groups 

of components. 

 

Thereafter, the Pareto-optimal solutions are obtained and the lowest sensitivity 

solution at SI = 1 is selected to create the risk matrix. The result of risk matrix for each 

case is shown in Fig. 5.9 (a) - Fig. 5.12 (a), respectively. For the sake of simplifying the 

understanding in the proposed methodology, the results of investigated case 1 are 

explained in detail. For the investigated case 1, the result of test interval groups 

obtained from the risk matrix in Fig 6(a) is that the components allocated for T 1 are  

V1, V2, Pa, Pb, Pc and the components allocated for T 2 are V3, V4, V5, V6, V7.  

 

Thereafter, the multi-objective optimization is performed again for the latest 

obtained test interval groups and solution at SI = 1 is selected to create the risk matrix as 

the result shown for each case in Fig. 5.9 (b) - Fig. 5.12 (b), respectively. From this risk 

matrix, the components that should be revised are selected and the revised risk ranking 

matrix step 1 for each case is created and shown in Fig. 5.9 (c) - Fig. 5.12 (c), 

respectively. For the investigated case 1 of Fig. 5.9(b), Pa, Pb, Pc, are specified as the 2nd 

case of the revised components (described in section 5.4) that should be revised by 

extending the test interval. Therefore, test interval for Pa, Pb, Pc, is revised from T 1 to 

T 2. The result of test interval groups obtained from the revised risk ranking step1 in 

Fig.5.9(b) is that the components allocated for T 1 are V1, V2 and the components 

allocated for T 2 are V3, V4, V5, V6, V7, Pa, Pb, Pc.  
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Components Test interval group

V1, V2

V3, V4, V5, V6, V7

PA, PB, PC

T 1

T 2

T 3

 

The process of multi-objective optimization and revising risk ranking are repeated 

until the test interval groups are converged like the last step in 

Fig. 5.9 (d), Fig. 5.10 (d), Fig. 5.11 (c), and Fig. 5.12(d). These figures in the last step 

show that the risk significance of all components falls into the medium risk significance 

(zone 2). The results are then shown to be the most optimal test interval groups based on 

risk. 

 

The results for each step in the proposed methodology of all investigated cases are 

summarized again as shown in Table 5.4. As shown in Table 5.4, the converged results 

for all investigated cases (after applying the proposed methodology) are completely 

same regardless of the initial conditions. This shows the appropriateness of the 

methodology. The obtained result of the optimal surveillance test interval groups based 

on risk consideration for all investigated cases is shown in Table 5.3.  

 

Table 5.3 The most efficient test interval groups based on risk consideration by the 

proposed methodology. 
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Case Risk ranking 
step

Risk ranking
step 

T 1

V1,V2,
PA,PB,PC

V3,V4,V5,V6,
V7

T 2 T 3

-

V1,V2 V3,V4,V5,V6,
V7, PA,PB,PC

Test interval groups

Initial risk 
matrix step

Revised risk 
ranking step 1

V1,V2 V3,V4,V5,V6,
V7

PA,PB,PC

Shown
In Fig.

Fig. 
5.9(a)
Fig. 
5.9(b)

Fig. 
5.9(c)

1

Risk ranking
step 

V1,V2,V3,V4,
V5,V6,V7

PA,PB,PC -

V1,V2 V3,V4,V5,V6,
V7, PA,PB,PC

-

Initial risk 
matrix step

Revised risk 
ranking step 1

V1,V2 V3,V4,V5,V6,
V7

PA,PB,PC

Fig. 
5.10(a)

Fig.
5.10(b)

Fig.
5.10(c)

2

Revised risk 
ranking step 2

Fig.
5.10(d)

Risk ranking
step 

V2, V3,V4,V5,
V6,V7

V1, PA,PB,PC

V3,V4,V5,
V6,V7

V1,V2 V3,V4,V5,V6,
V7

Initial risk 
matrix step

Revised risk 
ranking step 1

PA,PB,PC

Fig.
5.11(a)
Fig. 
5.11(b)

Fig.
5.11(c)

3

Risk ranking
step 

V1,V2,
PA,PB,PC

V3,V4,V5,V6,
V7

-

V1,V2 V3,V4,V5,V6,
V7, PA,PB,PC

-

Initial risk 
matrix step

Revised risk 
ranking step 1

V1,V2 V3,V4,V5,V6,
V7

PA,PB,PC

Fig.
5.12(a)
Fig.
5.12(b)

Fig.
5.12(c)

4

Revised risk 
ranking step 2

Fig. 
5.12(d)

-

Revised risk 
ranking step 2

Fig.
5.9(d)

Values at SI = 1
Unavail-
ability

Cost
($)

3.75E-5 2477All 
components

--

3.79E-5 2082

3.20E-5 845

3.18E-5 851

V1,V2, 
PA,PB,PC

V3,V4,V5,V6,
V7

-

3.20E-5 845

3.18E-5 851

3.79E-5 2082

3.36E-5 1317

4.83E-5 1238

3.89E-5 2234

3.18E-5 851

V2 V1, PA,PB,PC

-

V1,V2,V3,V4,
V5,V6,V7

PA,PB,PC - 3.36E-5 1317

3.79E-5 2082

3.20E-5 845

3.18E-5 851

 

Table 5.4. Test interval groups for each step in the processes of the proposed 

methodology. 
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From risk matrix and revising risk matrix in Fig.5.9 – Fig5.12 and Table 5.4 are 

shown that only the initial risk-ranking step may not provide the improved solutions 

because this step is only the step of approximate ranking. The revising risk ranking step 

that is proposed in section 5.4 of this chapter is required to improve the results. The 

result of system unavailability of the last step of Table 5.4 provide the minimize value 

comparing with other steps, therefore these results confirm that the converge 

surveillance test interval groups in the last step for all investigated case is the most 

optimal surveillance test interval groups based on risk consideration for this system. 

 

In order to confirm the proposed methodology is capable of finding the most optimal 

surveillance test interval groups based on risk consideration, the Pareto-optimal 

solutions of initial surveillance test interval groups before performing the proposed 

methodology are compared with the Pareto-optimal solutions of the optimal test interval 

groups obtained by the proposed methodology. The results are shown in Fig. 5.13.  

 

As shown in the Fig.5.13, the objective function values SI = 1from the Pareto-optimal 

solutions obtained from four initial cases, which operated with the non-suitable test 

interval groups, are not sufficiently appropriate. Therefore, risk management is required 

together with the optimization and the proposed methodology is required. After 

comparing all of the Pareto-optimal solutions in Fig. 5.13, the Pareto-optimal solutions 

obtained after performing the proposed methodology provides the most satisfactory 

result. Therefore it is confirmed from the results from Fig.5.13 that the proposed 

methodology is capable of determining the most optimal surveillance test interval 

groups based on risk consideration that provide the most satisfactory result of the 

Pareto-optimal solutions 
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Fig. 5.13. The comparison of the Pareto-optimal solutions before performing the 

proposed methodology and the Pareto-optimal solutions obtained by the proposed 

methodology. 
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In addition, Fig.5.13 also shows that there is the region of the initial Pareto-optimal 

solutions of the investigated case 4 overlap with the most efficient Pareto-optimal 

solutions. In order to proof that a point in this zone is not appropriate to be selected as 

the representative solution for being improved. The point at the fixed value in this 

overlapping region of the investigated case 4 is then selected to process the risk ranking 

and the revising risk ranking, and the obtained results of the optimal test interval groups 

are not converged to the most optimal test interval groups based on risk consideration as 

shown in Table 5.3. However, the other point, which does not locate in the overlapped 

region, provide the same results as shown in Table 5.3 after performing the proposed 

methodology. It is then confirmed that selecting the point in this overlapping region is 

not appropriate. Therefore, the suggest SI = 1 point in the proposed methodology is 

more reasonable because selecting the point at SI = 1 to be improved in the proposed 

methodology for all investigated cases provide the convergent to the same result as 

shown in Table 5.3. for this HPIS system. 

 

Moreover, the risk-based inservice testing by ASME is also applied to improve the 

surveillance test of the HPIS in Fig.5.8. Then the obtained surveillance test interval 

groups by ASME method are also compared with those obtained using the proposed 

methodology. As described in section 2.4.4 of chapter 2, the risk-based inservice testing 

of ASME categorize the risk significant of the components by the FV-RAW matrix. 

ASME method does not define the revision of risk ranking. The FV-RAW matrix for all 

investigated cases in Table 5.2 are then plotted and shown in Fig.5.14-5.17 respectively. 
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For investigated case 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.14 RAW/FV Quadrant graph of risk by ASME method for investigated case 1. 
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Fig.5.15 RAW/FV Quadrant graph of risk by ASME method for investigated case 2. 
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Fig.5.16 RAW/FV Quadrant graph of risk by ASME method for investigated case 3. 
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Fig.5.17 RAW/FV Quadrant graph of risk by ASME method for investigated case 4. 
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  The surveillance test interval groups obtained by the ASME method for all 4 

investigated cased are shown in Table 5.5 

 

Table 5.5 Test interval groups obtained by ASME method 

 

 

 

 

 

 

For the FV-RAW matrix of the risk-based inservice testing by ASME for investigated 

cases as shown in Fig. 5.14 - Fig. 5.17, the value of FV and RAW of each component is 

very different. Nevertheless, the fix values of FV and RAW for dividing the risk 

significant in the FV-RAW matrix make the too high risk significant component fall in 

the same group of the extremely lower risk significant component. For example, V1 and 

V2 are very high in risk significant but fall in the same group of V5, PA, PB, PC. 

Therefore, the optimal result from test interval groups obtained by ASME method may 

not sufficiently satisfy. Figure 5.18 shows the comparison of the Pareto-optimal 

solutions obtained by the proposed methodology and that obtained by the ASME 

method. 

 

 

 

 

 

Components Test interval group

V1, V2 ,V5, PA, PB, PC

V3, V4, V6, V7

T 1

T 2
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Fig. 5.18 The comparison of the Pareto-optimal solutions obtained by the ASME 

method and the Pareto-optimal solutions obtained by the proposed methodology and the 

solution from the surveillance test interval specified for the HPIS by NRC. 
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Components Surveillance test interval (h)

Pump (P)

Valve (V)

2184

2184

The results from Fig.5.18 show that the proposed methodology provides more 

satisfactory solutions than the solutions obtained by the ASME method. Moreover, if 

trying to change the selecting point in the Pareto-optimal solutions of the initial 

surveillance test interval groups for performing the risk ranking, the obtained test 

interval groups by the ASME method does not provide the same result although the 

select solution does not overlapped with the updated Pareto-optimal curve. Therefore, 

only the concept of risk-based inservice testing in the ASME method may not be 

appropriate for applying with the multi-objective optimization.  

 

In addition, Table 5.6 shows typical surveillance test interval requirements included 

into the HPIS Technical specifications (TS) by the U.S. Nuclear Regulatory 

Commission (NRC). 

 

Table 5.6 Typical surveillance test interval requirements by NRC [50]. 

 

 

 

 

 

The result of unavailability and maintenance cost for the typical surveillance test 

interval are also shown in Fig.5.18. The results in Fig. 5.18 are also shown that after 

performing the optimization and risk-based inservice testing, the objective values are 

improved. Moreover, the obtained result by the proposed methodology provides the 

most satisfactory solutions when compared with both that obtained by ASME method 

and typical requirement by NRC.  
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Fig.5.19 Example of complicated shape of the Pareto-optimal curve. 

 

The proposed methodology was verified by the simply case of the Pareto-optimal 

curve, which is uncomplicated shape. However, in the case of applying the proposed 

methodology to the complicated shape of the Pareto-optimal curve, such as the concave 

curve in Fig.5.19, the following idea is proposed. 

 

First, the inflection points of the Pareto-optimal solution such as point a’, b’, c’ and 

d’ in Fig. 5.19 are determined.  The range between the adjacent inflection points is 

simply in the shape of the Pareto-optimal curve. Because the proposed methodology 

was verified that it is efficient for applying to the simply shape of the Pareto-optimal 

curve, therefore, the proposed methodology can also apply to each range of simple 

shape of the Pareto-optimal curve. After apply the proposed methodology to each range, 

a number of lowest sensitivity points with SI = 1are obtained. The decision-making 

point is the point with SI = 1 point that is closest to the ideal point, which is the optimal 

point from the consideration of both robustness and closeness to the ideal solution. 
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5.7 Concluding remarks 

In this chapter, the new methodology for risk-based inservice testing policy using the 

multi-objective optimization with robustness was proposed in order to improve the 

maintenance activities to be the most satisfactorily result together with considering of 

the robustness.  

 

The result obtained by the proposed methodology is also compared with that obtained 

by the risk-based inservice testing of ASME method and typical surveillance test 

interval requirement by NRC. It is confirmed that the obtained result by the proposed 

methodology provides the most satisfactory solutions when compared with that 

obtained by ASME method and that obtained typical surveillance test interval 

requirement by NRC.  

 

The results from many investigated cases were confirmed that the proposed 

methodology provide the effective scheme to achieve the most optimal test interval 

groups based on risk-based consideration and also provide the robust result.  
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Chapter 6 
 

Conclusions 
______________________________________________________________________ 

 

6.1 Conclusions 

This research has proposed new indexes and methodology for improving the 

surveillance test in the maintenance activities of a standby safety system in a nuclear 

power plant to be most efficient based on risk and robustness consideration. A standby 

system of a simplified high-pressure injection system (HPIS) in a nuclear power plant’s 

pressurized water reactor (PWR) was conducted as the case study.  

 

First, in order to improve the surveillance test, the optimization is required. But the 

single-objective, which is wildly used in the maintenance activities, may give the 

inappropriate solution and may inefficient because of intrinsic trade-offs in the problem. 

With the efficient viewpoint that can solve the conflicting objectives in the maintenance, 

the multi-objective optimization was carried out. The considered simultaneous objective 

functions in this paper are the unavailability and maintenance costs.  

 

After the multi-objective optimization results were obtained, the idea and new 

methodologies for the development in this research was proposed as follows. 
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6.1.1 Propose the new decision making from the robustness point of view. 

After the multi-objective optimization results were obtained, they showed that there 

are some regions in the Pareto-optimal solutions were not appropriated for decision 

making in the viewpoint of robustness. From the robustness viewpoint, the new decision 

making for determining the most promising solution from the multi-objective 

optimization solutions are proposed according to the user’s requirement.  

 

We have proposed the sensitivity index, SI for the decision-making in the viewpoint 

of sensitivity and then proposed the uncertainty index, UI for the decision making in the 

viewpoint of uncertainty. The decision index, DI was then proposed to simultaneously 

to achieve a good compromise between sensitivity and uncertainty.  

 

The results were shown that each index is appropriate according to the user’s 

requirement. The sensitivity index is appropriate for expressing the degree of robustness 

of the solution in the viewpoint of sensitivity. The uncertainty index is appropriate for 

expressing the degree of uncertainty of the solution in the viewpoint of uncertainty and 

the decision index is appropriated for good compromising between sensitivity and 

uncertainty.  
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6.1.2 Proposed the new methodology for applying the multi-objective optimization 

to risk-based inservice testing. 

In order to make the maintenance activities being most efficient based on risk and 

robustness, the new methodology for applying the multi-objective optimization to 

risk-based inservice testing was proposed. This methodology was proposed in order to 

improve the maintenance activities to be most satisfactorily based on risk and 

robustness together with considering of the trade-off between the objectives.  

 

The results from many investigated cases were shown that if the maintenance 

activities were operated with the non-suitable test interval groups, the obtained 

objective function values would not be sufficiently appropriate although the 

optimization was performed. Conclusively, the proposed methodology was confirmed 

that it is capable of determining the most optimal surveillance test interval groups that is 

suitable and provides the most satisfactory Pareto-optimal solutions.  

 

Moreover, because this proposed methodology used the proposed decision making 

index that considers of the robustness, therefore the final obtained result was most 

efficient at the most robustness.     
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6.2 Suggestions for future work 

  The objectives that have been proposed in this research were approved being 

accomplished with the proposed methodologies. However, the future works as 

summarized below are suggested for more extensive idea. 

  

6.2.1 About the objective functions for the multi-objective optimizations 

This research introduced the application of the multi-objective optimization to 

improve the efficient of the surveillance test. By applying the multi-objective 

optimization, the trade-offs that is intrinsic in the problems can be solved. The most 

important conflicting objectives of the unavailability and maintenance cost are 

considered in this research. However, for the future work, another objectives should be 

considered as the objective functions for this maintenance activities problem, such as an 

effect to human, an effect to environment.  

 

6.2.1.1 Ideas for decision-making with robustness, when the number of objective 

functions is more than two 

In this research, we have considered two objectives and the performance of the 

proposed methodologies have been confirmed. When the number of objective functions 

is more than two, the following ideas are proposed for the decision-making in the 

viewpoint of robustness. After determined the decision-making with robustness, the 

proposed methodology in chapter 5 (Risk-based Inservice Testing Policy using the 

Multi-Objective Optimization with Robustness) can be applied directly. 
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(1) For the decision-making in the viewpoint of sensitivity (SI, in chapter 3). 

First, plot all          pairs among M objective functions. The determined 

Pareto-optimal curve plot of each pair is the projection of the most optimal curve (best 

solutions) to that pair of objectives space plot. Thereafter, the lowest sensitivity solution 

of SI = 1 for all pairs are determined. Fig.6.1-a, Fig.6.1-b and Fig.6.1-c show example 

of all pairs among 3 objective functions. SI12, SI13, SI23 are the corresponding SI = 1 

points in the F1-F2, F1-F3, F2-F3 pair plotted respectively.  

 

However, SI = 1 point in one pair plotted may not equal to 1.0 in the other pair 

plotted. For example, SI13 and SI23 in F1-F2 plotted may not be 1.0 as shown in 

Fig.6.1-a. The ideal point for robustness is the point of (SI12, SI13, SI23) = (1,1,1) in all 

pairs plotted. Therefore, the decision-making is the point among these SI12, SI13, SI23 

that have the closest distance from the ideal point for robustness. For each pair plotted, 

the distance from the ideal point for robustness can be determined from the following 

equation. 

 

 

While i and j are the index of the pair ith and jth objective functions in each space plot.  

M is the number of objective functions. 

 

After evaluate the distance in Eq.(6.1) for each pair plotted, the decision making 

point is the SI = 1 point in the pair plotted that has the lowest distance evaluated from 

Eq.(6.1). 

 

 

Distance from the ideal point for robustness  =  [ Σ(SIij - 1)2 ]1/2;  i,j = 1,2,..,M  (6.1) 
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UI =  [ Σ(%COV of Fi)2 ]1/2;  i,j = 1,2,..,M      (6.2)

 

 

 

 

 

      

   Fig.6.1-a   Fig.6.1-b   Fig.6.1-c 

 

Fig. 6.1.  The example of all pairs among 3 objective functions. 

 

(2) For the decision-making in the viewpoint of uncertainty (UI, in chapter 4). 

The uncertainty index (UI) is defined by the Eq.(4.1) in section 4.3.1 of chapter 4 is 

modified for the decision making in the viewpoint of uncertainty when the number of 

objective functions is more than two. The modified uncertainty index (UI) is shown in 

the following equation. 

 

 

Where Fi is the ith of the objective function. M is the number of objective functions. 

  

The minimum value of UI gives the decision-making solution with the lowest 

uncertainty for all objectives. 

 

 

 

 

F1

F2 S12 = 1S13

S23

F1

F3 S13 = 1S12

S23

F2

F3 S23 = 1S23

S13
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6.2.2 About the formulation of objective function 

   The unavailability function that is formulated in this research, which is reference 

from ref. [33], has some suggestion for being improved as follows 

 

1) The surveillance test may have adverse effect. These adverse effects are due to 

unnecessary starting of the component for the surveillance test. The possible risk 

associated with these adverse effects are such as, unnecessary wear-out or equipment 

degradation and unnecessary radiation exposure to plant personnel etc. However, the 

unavailability function that is formulated in this research, which is reference from 

ref.[33], is assumption on no adverse affect that are due to surveillance test. In order to 

make the objective function model being more realistic, for the future work, the adverse 

affect due to the surveillance test should be considered. 

 

2) The unavailability function that is formulated in this paper was assumed to be 

average unavailability over period of surveillance test interval. In order to make the 

analytical being more precisely, in the future work, the unavailability formulation 

should be modeled as time-dependent unavailability. 
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