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1 Research background 
 

1.1 Social Aspect 
 
  MEMS micro-mirrors have been widely used in optical switches and scanning 
devices1. For instance, “Eco-scan” from Nippon Signal Corporation is shown below 
in Fig 1. 
 

 
Fig1: Eco-scan from Nippon Signal Corporation 
 

 
Fig 2: Working principle of the micro-mirror 
 
  Fig 2 shows the principle of the micro-mirror. The movement of the mirror is 
achieved by electromagnetic drive. Lorentz force is controlled easily by the 
direction and amplitude of the current flowing the driving coil fabricated on the 
driving plate. The driving coil is also used for detecting the rotational angle. 
Lorentz force vector F is given by: 
 

F i B= ×         -------------------------(1) 
 
where i is the current density vector and B is the magnetic flux density vector 
produced by the permanent magnets. A torque T can be generated by the 
opposite directional Lorentz force on both sides of the torsion bar. The rotational 
angle φ is given by: 
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T
kφ =            -----------------------(2) 

 
where k is the spring constant of torsion and can be expressed as: 
 

pGIk L=              ------------------------------(3) 

 
G is the shear modulus, pI  is the polar second moment of area and L is the length 
of the torsion bar. 
 

 
Fig 3: Structure of a two-dimensional Galvano optical scanner 
 
  Fig 3 shows the structure of the two-dimensional Galvano optical scanner. 
Two-dimensional operation can be achieved by a gimbal structure fabricated by 
silicon etching. (Note that there are two sets of permanent magnets). When 
currents Ai  and Bi  are applied to driving coils with magnetic fields of magnetic flux 
densities AB  and BB  applied in the directions perpendicular to torsion bars A and 
B, rotational torques are generated by Lorentz forces AF  and BF  respectively, 
thereby permitting the mirror to tilt to a position where the restoring forces of the 
torsion bars are balanced with the corresponding rotational torques. By changing 
the magnitudes of the currents Ai  and Bi  respectively, it is possible to change the 
tilt angles of the mirror, as desired, in the directions of the two axes. 
 
  The beams supporting the micro-mirrors are twisted and deformed largely and 
consequently these beams failed by brittle fracture catastrophically. To ensure 
that these beams work safely and reliably, there is a need to clarify the 
mechanical characteristic of such beams. For instance, the safety working 
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rotational angle and fracture stress of the beam. Furthermore, since the micro-
mirrors are fabricated by ICP (inductively-coupled plasma) etching process, the 
strength characteristic of the micro-mirrors will be determined by the extent of the 
damage caused by etching on the surfaces of the beams. Thus, it is also possible 
to evaluate  and estimate the strength of the beams associated with the etching 
process. Here, the etching process is kept as simple as possible, preferably a 
single mask process. (Refer to 5.1.2 for more details on the etching process) 
 

1.2 Academic aspect 
 
  Until now, many researches have been performed to determine the mechanical 
characteristics of MEMS. Most of them are pure bending tests4,13,14,16,17,18,21 and 
direct tensile tests2,3,4,15,20,24,25. 
 

 
Fig 4: A schematic drawing of the tensile-testing procedure: (a) sample-to-probe 
alignment, (b) fixing the sample on the probe using electrostatic force, (c) applying 
tensile force by moving the probe and (d) releasing the fractured sample by 
changing the polarity applied to the probe and substrate. 
 
  A good example of direct tension testing is that performed by Tsuchiya2. He 
found that electrostatic attraction force could be used to hold the sample during 
tension loading, as explain in Fig 4. Although the direct tension test is an effective 
method when it is properly performed and the data can be easily interpreted, the 
requirements for sample alignment and deflection of measurement are stringent. 
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For a microscale test, the task of meeting these requirements is rather challenging. 
Fracture testing inside a SEM chamber has the distinctive advantages of 
preserving the fracture surface from contamination and oxidation until observation. 
However, the whole measurement set-up should be compact enough to fit inside 
the SEM chamber. 
 

 
Fig 5: A schematic view of the tensile -testing chip with an integrated aid structure 
that direct loading 
 
  Another example of tensile test (integration of specimen and testing setup) is that 
performed by Sato3. He introduced an aid structure consisting of a loading lever 
and two torsion bars, which converted the external loading of the lever into unaxial 
tension force on the tensile specimen. When a needle tip pushed down the free 
end of the loading lever perpendicular to the chip surface, the other end of the 
lever rotated about the axis of the torsion bars. This caused movement of the 
connecting point, where the tensile specimen was connected to the loading lever. 
Since the motion was small, he assumed that the point moved horizontally 
following a straight path and applied a pure tension to the specimen. Since the 
specimen and the aid structure were fabricated together lithographically, the 
misalignment between them could be minimal. However, the measured data 
includes the contribution of the aid structure as well. The effect of the torsion bars 
and the loading lever should be quantified and subtracted for accurate 
measurement and correct interpretation of data. 
 
  Most of the problems of testing microsamples with a separate measurement 
system can be avoided if the entire system, including the loading actuator, is made 
on chip4. However, the task of integrating the entire system is not simple. Firstly, 
the popular electrostatically driven comb actuators do not readily provide enough 
force to test mechanical properties such as fracture strength. Secondly, other 
microactuators require fabrication processes that are rather complicated or 
different from that which the specimen does. Thirdly, the microactuator need to be   
calibrated so that the force it delivers to the specimen can be known accurately. 
 
  Testing by bending has the advantage of being simple compared with the direct 
tension test. Bending test needs a smaller force than tension test but yields a 
lateral deformation, which is large enough to be measured using an optical 
microscopy. Moreover, bending method is free of the problems of sample gripping  
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and the method is not affected by slight misalignment in the loading direction. As 
such, the loading mechanism becomes relatively simple and easy to use. The 
bending samples can also be made smaller than a tensile-testing specimen and 
can be tested more easily. However, the analysis of data obtained by bending  test 
is not straightforward due to the large deformation of the beam and the stress 
concentration at the boundary. Thus, both analytical and numerical approaches 
need to be used to help interpret the data. 
 
  A common problem with most of the present testing methods is that the etching 
process is quite complicated. Consequently, the damaging effects that the etching 
process exerts on the specimens cannot be effectively evaluated. As such, there is 
a need to keep the etching process simple to effectively estimate the effects 
etching process. Here, experiments and statistical analysis can be used in 
combination to correlate the damage caused by the etching process and the 
fracture strength of the specimens. 
 
  From an industrial and practical point of view, it is necessary to extract as many 
samples as possible from a single piece of wafer. As such, the interactions 
between the samples on the wafer have to be considered with the aid of FEM 
analysis. Moreover, if the specimen is of the same size as the real product, the 
actual working stress environment is produced and thus, more reliable and useful 
data can be obtained and used for actual performance.  From a reliability 
engineering point of view, the design stress and the number of specimens needed 
to achieve the required level of reliability can be determined by means of 
probabilistic design. From a fractographic point of view, there is a need to locate 
the crack initiation site and identify the flaw population (flaw size and orientation). 
Moreover, the fracture mode (Mode I, Mode II, Mode Ill) should also be determined 
as far as possible. It is experimentally difficult to perform a pure torsion experiment. 
As such, combined loading (combination of pure bending and pure torsion) is 
performed and the effects of pure torsion can be estimated by means of the load 
factor analysis (refer to 3.2 for discussion on “load factor analysis”) 
 
  In conclusion, torsional loading tests22,23 and fractures due to torsional 
loading are relatively not well documented. As such, there is still much room 
for research relating to torsional loading tests and fractures due to torsional 
loading.  
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2 Aims of research 
 
The first aim of the research is to design a specimen suitable for micro testing. 
Next, an experimental procedure for micro testing will be proposed. Then pure 
bending and combined loading (combination of bending and torsion) tests will be 
performed and a failure criterion based on the experimental data will be proposed. 
Finally, a general safety design procedure for microstructure under torsional 
loading will be proposed. 
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3 Theory 
 
3.1 Weibull theory 
 
3.1.1 Introduction 
 
The Weibull theory has been widely used to describe the strength of brittle 
materials. The underlying assumptions are  

A) The defects are independent from each other i.e. they are not interacting.  
B)  The material obeys the “weakest-link hypothesis”; i.e. the weakest defect 

causes the failure of the whole structure.  
C)  A critical defect density can be defined, and the size of a critical defect is 

uniquely related to the strength (usually by Griffith’s law) 
 
The Weibull theory was developed by Weibull, using the idea when one link in a 
chain fails, the whole chain fails. Weibull also considered multi-axial stress 
problems and assumed that normal tensile stress acting on a crack causes the 
failure of a component.  
 
As such, this approach cannot be used to describe5  

A) Fracture in materials which exhibit R-curve behavior 
B) Fracture in stabilizing stress fields. 

In both of these cases, stable crack growth may occur so that the flaw distribution 
when fracture occurs is not the same as the initial flaw distribution. Nor can the 
weakest link approach be used directly to describe constrained cracking such as 
fractures in brittle coatings or in the fragmentation of brittle fibers in composite 
materials. In these cases, a given fracture event may be dependent on the whole 
history of fracture. 
 
The Weibull theory for an uniaxial stress state can be written as: 
 

( ) ( )1 exp
m

th
f

o

dAP a
σ σ

σ
 −  = − −     

∫                    --------------------(4) 

 
In equation (4), fP  is the probability of failure, A is the surface area and a is a unit 
area which is introduced for consistency of units. It can be seen that there are 
three parameters, which control the failure probability: oσ , thσ  and m. There are, 
respectively, a value related to the mean strength of the brittle material, a 
threshold  stress below, which the brittle material will not fail, and a  measure of the 
scatter in the failure strengths of nominally identical components. σ  is the failure 
stress and, in this case, the equation is integrated over the surface area. However, 
most analyses ignore the threshold stress and assume that it is zero. This is done 
because it gives a conservative prediction and because it is much simpler to find 
the remaining two parameters. 
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3.1.2 Problems of using the Weibull theory 
 
Because of the statistical nature of brittle fracture, there is considerable 
uncertainty in the estimated parameters and this leads to the question as to how 
many specimens need to be tested8. It has been shown that there can be 
considerable variation in the value for the Weibull modulus, m, and that the 

standard deviation of m divided by its mean can be approximated by 1
n

 where 

n is the number of samples. This possible variation in m, caused by a finite sample 
size, can lead to errors in the prediction of component failure stresses. 
 
A further problem arises as to the failure origin. The failure theories can be based 
on an integral over the surface or over the volume. The surface integral can 
account for surface damage due to machining and for pores and cracks, which 
penetrate the surface. The volume integral can account, in addition, for internal 
cracks and porosity. It is possible that both surface and volume flaws are present. 
Specimen failure will depend on whether the surface or volume flaw is the most 
critical and this will vary with loading condition and specimen geometry. Specimen 
failure depending on the surface or volume flaw will be based on the ‘effective 
surface’ or ‘effective volume’ model respectively. Recently, a new model, namely 
the ‘effective shell’ model7, which is a combination between the effective surface 
and effective volume model, has been introduced.  
 
An underlying assumption of using equation (4) to describe the failure strength is 
that there exits a single unimodal flaw distribution. Specifically, a unimodal flaw 
distribution will mean that there is just one fixed size and one fixed orientation 
distribution. However, in reality, there may be more than one flaw distribution (a 
bimodal or even a trimodal) in the specimens. Different flaw distributions can be 
attributed to the different orientation of the flaws at different locations or locations 
of the flaws (surface, volume). Moreover, the loading method (combined loading, 
pure bending or pure torsion) or geometry of the specimen may have led to a 
seemingly bimodal or trimodal flaw distribution.   
 
The concept of “concurrent flaws ” has been introduced in some literature9. For 
instance, “concurrent flaws”, which means present in all volumes, may be the 
result of two different flaw distributions existing in the same single specimen. The 
‘concurrent flaws’ can be modeled using the multiplicative bimodal Weibull 
distribution. Moreover, another approach, namely the “non-concurrent flaw”, which 
means not present in all volumes (for example, scratches originating from a 
grinding procedure, which occur for only some specimens), can be modeled by an 
additive bimodal Weibull distribution.  
 
Theoretically, the bimodal Weibull distribution can be identified graphically by the 
appearance of two conspicuous peaks in the PDF plot. However, in reality, if the 
flaw distribution cannot be identified in the first place, the strength distribution is 
thus unknown. Thus, strength tests are initially performed and failure strengths are 
then obtained and the Weibull plot made. When the experimental data are treated 
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using the Weibull plot, identification of a bimodal flaw distribution is difficult. As 
such, when treating experimental data using the Weibull plot, the underlying 
bimodal flaw distribution may go unnoticed.  
 
 
3.1.3 Significance of the Weibull modulus m 
 
The Weibull modulus defines the width of the probability distribution. If m is large, 
the distribution is narrow, showing a small spread of failure strength. If m is small, 
the distribution is wide, showing a large variation in failure strength. Poor ceramics 
have m in the range of 3~10. Good engineering ceramics have m in the range of 
10~40, usually closer to 10 except for high toughness materials. In short, it can be 
assumed that the Weibull modulus m is representative of the homogeneity of the 
flaw distribution10. A larger Weibull modulus m will signify a more homogeneous 
sample. 
 
 
3.1.4 Estimating the Weibull parameters using the Maximum Likelihood 

Estimator (MLE) 
 
The method of maximum likelihood is a commonly used procedure because it 
shows the smallest coefficient of variation6. Let 1 2 3 4, , , ......... nx x x x x be a random 
sample of size n drawn from a probability density function, ( ; )Xf x θ , where θ is an 
unknown parameter. The  likelihood function of this random sample is the joint 
density of the n random variables and is a function of the unknown parameter.  
 

1

( , )
i

n

X i
i

L f x θ
=

= ∏                           --------------------(5) 

 
Thus equation (5) shows the likelihood function. The maximum likelihood estimator 
(MLE) of θ, say θ

)
, is the value of θ that maximizes L or, equivalently, the logarithm 

of L. Often, but not always, the MLE of θ is a solution of equation (6) 
 

log
0

d L
dθ

=                              ----------------------(6) 

 
where solutions that are not functions of the sample values 1 2 3 4, , , ......... nx x x x x   are 
not admissible, nor are solutions which are not in the parameter space. Now, we 
are going to apply the MLE to estimate the Weibull parameters, namely the shape 
β and the scale η parameters. Consider the Weibull PDF (equation (7): 
 

 
1

( )
x

x
f x e

ββ
ηβ

η η

−  
− 

  
=  

 
                      --------------------(7) 
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Then likelihood function will be shown in equation (8): 
 

1

1,
1

( ....., ; , )
ixn

i
n

i

x
L x x e

ββ
ηβ

β η
η η

−  
− 

 

=

  
=   

  
∏    --------------------(8) 

 
On taking the logarithms, differentiating with respect to β and η in turn and 
equating to zero, we obtain the estimating equations  (9) and (10): 
 

1 1

ln 1
ln ln 0

n n

i i i
i i

L n
x x xβ

β β η= =

∂
= + − =

∂ ∑ ∑      --------------------(9) 

 

2
1

ln 1
0

n

i
i

L n
x β

η η η =

∂
= − + =

∂ ∑                        --------------------(10) 

 
On eliminating η between these two equations and simplifying, we have  equation 
(11): 
 

1

1

1

ln
1 1

ln 0

n

i i n
i

in
i

i
i

x x
x

nx

β

β β
=

=

=

− − =
∑

∑
∑

                  --------------------(11) 

 
which may be solved to get the estimate β

)
. This can be accomplished by the use 

of standard iterative procedures (i.e., Newton-Raphson method). Once  β
)

 is 
determined,η)  can be estimated by: 
 

1

n

i
i

x

n

β

η ==
∑

                                            --------------------(12) 
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3.2 Load factor analysis 
 
3.2.1 Definition 
 
For a more general case, the load factor is defined as shown in equation (13): 
 

( )1
 ( , , )

m

region

load factor f x y z dxdydz
volume

= ∫∫∫  --------------------(13) 

 

whereby 
nominal

( , , )
( , , )

x y z
f x y z

σ
σ

=  is the position function and m is the Weibull 

modulus. 
 
The position function ( , , )f x y z  is a dimensionless stress function and gives the 
ratio of the stress at a particular position ( , , )x y zσ  with respect to nominalσ , which is 
often taken to be the maximum principal stress for the case of brittle fracture. For a 
line of flaw under stress is defined as, the load factor which in this case also 
known as the stress-length integral (shown in equation (14): 
 

( )
0

1
 ( ) ( )

m
L

load factor f l d l
L

= ∫                               --------------------(14) 

 
whereby L is the length of the flaw under consideration. 
  
 
3.2.2 Interpretation 
 
Since the stress varies with position and is not uniformly distributed across the 
concerned dimension (length or area or volume), there is a need for an index (load 
factor) that shows the intensity of the stress distribution with respect to the case 
when the stress does not vary with position and is uniformly distributed across the 
concerned dimension. 
 
The load factor in the case of uniform tensile stress acting on the concerned 
dimension is one. For all the other cases, namely pure bending, combined loading 
and pure torsion, the load factor is less than one. 
 
The load factor is path-dependent, meaning that its value will change 
depending on the location of the integration path.  
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3.2.3 Load factor PDF (probability density function) 
 

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3

distance [mm]

st
re

ss
 [M

P
a]

 
Fig 4: A typical stress distribution along the edge length of beam 
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Fig 5: Position function is obtained by dedimensionalizing the stress distribution 
with a nominal stress (usually the maximum stress in the region concerned) 
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Fig 6: Load factor PDF is obtained by raising the value of the position function to 
the power of Weibull modulus 
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The peak maximum value of the load factor PDF is always one. One can construct 
a load factor PDF and used it to locate regions of stress severity. Such a load 
factor PDF can be used to compare samples with different fracture stresses since 
the load factor PDF like the load factor is a constant for a particular loading mode 
and geometry. Note that the load PDF graph (Fig 6) is much narrower than the 
stress graph (Fig 4 and Fig 5) and it implies that the region of severe stress and 
high fracture probability is concentrated to a narrow region.  
 
load factor PDF severity of stress distribution∝          --------------------(15) 
 
 
3.2.4 Load factor CDF (cumulative distribution function) 
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Fig 7: Load factor CDF obtained by integrating the load factor PDF  
 
 
The maximum value of the load factor CDF gives the load factor for a particular 
geometrical and loading system. The load factor CDF like both the load factor and 
load factor CDF is a constant for a particular loading mode and geometry. 
 



 18

3.2.5 Other essential points 
 

• No reference is made about the nature of the flaw PDF, which is assumed 
uniform in the concerned dimension. Since the definition of the load factor 
originated from the Weibull PDF, it is assumed that the flaws are 
independent: i.e. no interactions between the flaws. 

• The stress function to be used in the analysis of the load factor is not 
specified. However, for the case of brittle material, the stress function used 
is normally taken to be the principal stress function 

• The load factor obtained from a mode of loading cannot be directly 
compared to another mode. For instance, a load factor obtained for a pure 
bending cannot be compared directly with that compared from a combined 
loading since the direction of the principal stresses are different for the two 
cases. On the other hand, for the case of pure bending, since the direction 
of the principal is the same as that in the case of the uniform normal tensile 
stress, comparison can be made. Besides, load factor obtained for the case 
of the combined loading can also be compared to a certain extent with that 
obtained for the case of pure torsion. 

• A higher load factor, i.e. a load factor that is closer to the value of one will 
be “penalized” less in the cumulative failure probability distribution. Thus, 
the load factor can be interpreted as follows: 

 

                     
1

 load factor
penalty

∝                         --------------------(16) 

 
• Load factor, load factor PDF and load factor CDF are the same for all the 

different fractured stress of the same geometry and loading mode. Thus, 
one can use the load factor to characterize the stress distribution for a 
particular type of geometry and mode of loading. 
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Fig 8: Principal stress distribution for two extreme cases: high fractured stress and 
low fracture stress along the edge length of the beam 
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Fig 9: Load factor PDF for two extreme cases: high fractured stress and low 
fracture stress (300um pure bending) 
 
 
 

• Relationship between Weibull modulus and the load factor is given below: 
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Fig 10: Relationship between Weibull modulus and load factor 
 
The load factor is inversely proportional to the Weibull modulus (Fig 10). As the 
Weibull modulus becomes larger, the load factor PDF becomes narrow and as a 
result, the load factor CDF has a lower peak, which in turn implies a lower value 
for the load factor. 
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3.3 FEM modeling 
 
3.3.1 Necessity of FEM analysis and accurate experimental displacement 
 
Since the specimen geometry is complicated, FEM analysis is indispensable to the 
estimation of the fracture stress. Moreover, it be should be considered together 
with experiment.  Hence, it is important that the result obtained from the FEM 
analysis is reliable . In the case of pure bending, accurate experimental 
displacement can be obtained by measuring the specimen’s displacement with the 
LDM (laser displacement meter). The experimental displacement is used to ensure 
that result from the FEM analysis is reliable. In the case of combined loading, 
accurate LDM experimental displacement is not available. This is because the 
beam surface and the laser head are not parallel to each other after the beam 
undergoes relatively large downward displacement and the laser spot reflected off 
the beam surface cannot be captured by the laser head. However, since the 
specimen is depressed at the 5 th or 4 th hole, stiffness (spring constant) is relatively 
low and thus, the experimental displacement from the EZTest (bore screw 
displacement) can still be used as a form of guidance. (Note: in this research, 2 
types of experimental displacement are available: LDM and EZTest displacement: 
bore screw displacement) 
 
 
3.3.2 Submodeling 
 
Submodeling is a finite element technique used to obtain more accurate results in 
a region of interest in the FEM model. Often, in FEM analysis, the finite element 
mesh may be too coarse to produce satisfactory results in a region of interest such 
as a stress concentration region. The results away from this region, however, may 
be adequate. To obtain accurate results in such a region, you have two options: 
 

a) Reanalyze the entire model with greater mesh refinement 
b)  Generate an independent, more finely meshed mesh model of only the 

region of interest and analyze it 
 
Submodeling is also known as the cut-boundary displacement method or the 
specified boundary displacement method. The cut boundary is the boundary of the 
submodel, which represents a cut through the coarse model. Displacements 
calculated on the cut boundary of the coarse model are specified as boundary 
conditions for the submodel 
 
Submodeling is based on the St. Venant’s principle: If an actual distribution of 
forces is replaced by a statically equivalent system, the distributions of stress and 
strain are altered only near the regions of load application. This implies that stress 
concentration effects are localized around the concentration. Therefore, if the 
boundaries of the submodel are far enough away from the stress concentration, 
reasonably accurate results can be calculated in the submodel. Aside from the 
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obvious benefit of giving you results that are more accurate  in a region of your 
FEM model, the submodeling  has other advantages: 

a) It reduces, or even eliminates, the need for complicated transition regions in 
solid finite element models 

b) it enables you to experiment with different designs for the region of interest 
(different fillet radius, etc.) 

c) it helps you in demonstrating the adequacy of mesh refinements 
 
Some restrictions for the use of submodeling (in ANSYS) are: 

a) It is valid only for solid elements and shell elements 
b) The principle behind submodeling assumes that the cut boundaries are far 

enough away from stress concentration region. Hence, the cut-off boundary 
should not be in a region of high stress region and the location of the cut-
boundary is essential to the accuracy of submodeling. 

 

 
Fig 11: Submodeling of a pulley hub and spokes: (a) coarse model, (b) submodel 
shown superimposed over the coarse model 
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3.3.3 Construction of a good initial FEM model based on pure bending 
experimental results 

 
To ensure that the FEM model constructed is accurate, LDM displacement from 
pure bending experiment was compared with that obtained from the FEM model. 
Since material constant is fixed, the thickness of the wafer and the extent of the 
sub model are the only variables. The thickness of the wafer can be estimated in 
two ways: 
 

1) It can be measured directly using the LDM and then inputted into the FEM 
model.  

2) Determined from an interpolation procedure. 
 
When the experiment displacement matches the FEM displacement, one can use 
the FEM model to predict the fracture stress. Here, the initiation of the crack is 
determined by fractography, which is used together with the FEM model to 
pinpoint the fracture stress in the interested region. However, it should be noted 
that matching of displacement between the FEM and experiment is a 
necessary but not sufficient condition. Displacement can be matched 
accurately and yet the fracture stress obtained could be inaccurate or meaningless 
as being observed in the case of using the shell element or tetrahedron element to 
model the beam. Furthermore, FEM stress result should be analyzed in 
accordance with fractured stress estimated from conventional Weibull theory to 
ensure that the results obtained are reliable and meaningful.  
 

 
Fig 12: Relationship between the flaw PDF and fractured stress PDF 
 
Usually the flow is from the top to bottom. The flaw PDF is first identified and then 
the fractured stress PDF can be estimated using the Griffith’s theory. In this 
research, the flow goes both ways. 
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3.3.4 Problems of the different types of FEM elements 
 
Solid 95 
SOLID95 is a higher order version of the 3-D 8-node solid element SOLID45. It 
can tolerate irregular shapes without as much loss of accuracy. SOLID95 
elements have compatible displacement shapes and are well suited to model 
curved boundaries. The element is defined by 20 nodes having three degrees of 
freedom per node: translations in the nodal x, y, and z directions. The element 
may have any spatial orientation. SOLID95 has plasticity, creep, stress stiffening, 
large deflection, and large strain capabilities.  
 
Shell 93 
SHELL93 is particularly well suited to model curved shells. The element has six 
degrees of freedom at each node: translations in the nodal x, y, and z directions 
and rotations about the nodal x, y, and z-axes. The defo rmation shapes are 
quadratic in both in-plane directions. The element has plasticity, stress stiffening, 
large deflection, and large strain capabilities. 
 
Shell elements are used to model structures whose one dimension (the 
thickness) is much smaller than the other dimensions. Because of this assumption, 
the stresses through the thickness of the shell are assumed negligible. In this 
research, the Shell93 (quadratic shell element) is used to model the deformation of 
the whole wafer and hexahedron Solid95 is used to model the each specimen. It 
is advisable not to use Shell93 element and tetrahedron Solid95 to model the 
beam of each specimen. For the case of the Shell93 element, the traverse shear 
stresses SYZ and SXZ (Fig 13 and Fig 15) are assumed constant through the 
thickness. Compare these with that for hexahedron Solid 95: Fig 14 and Fig 16. 
Such assumptions will result in erroneous principal stress, which is used to 
estimate the fracture stress. Thus, the principal stress calculated along the length 
of the beam will be wrong too. 
 

 
Fig 13: Shear stress SYZ distribution for Shell 93 
 
[Note:  The axis direction will be the same as that in Fig 13 throughout the 
thesis] 
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Fig 14: Shear stress SYZ distribution for hexahedron Solid 95 
 

 
Fig 15: Shear stress SXZ distribution for Shell 93 
 

 
Fig 16: Shear stress SXZ distribution for hexahedron Solid 95 
 
When tetrahedron Solid95 is used to model the beam, there seems to be 
inaccurate nodal stress interpolation problem. (Fig 17 and Fig 18). Although the 
magnitudes of the stress are of the same order, for the case of tetrahedron 
Solid95, the edges of the shear stress SXY contour plot are zigzagged. For the 
case of the hexahedron Solid95 (Fig 19 and Fig 20), the edges of contour plots are 
smooth.  
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Fig 17: Mesh for tetrahedron Solid 95 
 

 

 
Fig 18: Shear stress SXY distribution for tetrahedron Solid 95 
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Fig 19: Mesh for hexahedron Solid 95 
 

 
Fig 20:Shear stress SXY distribution for hexahedron Solid 95 
 
In conclusion, Hexahedron Solid95 is used to construct the beam in view of 
the problems associated with shell and tetrahedron elements. The height of 
the beam consists of five layers of elements. When only 3 layers of elements are 
used, the edges of stress contour plot are zigzagged. When 5 layers of elements 
are used, the edges of stress contour plot become smoother. The displacements 
from both models are almost the same. (3-layered: 2.827mm 468MPa; 5-layered: 
2.828 440MPa for a typical combined loading FEM analysis).  
 
Note: As far as displacement is concerned, the different elements (shell 93, 
tetrahedron solid 95, hexahedron solid 95) give almost the same displacement 
(almost 100% matching). Shell 93 elements cannot be used to evaluate  through 
thickness stress and tetrahedron solid 95 elements has low accuracy for nodal 
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stress interpolation along straight path.  Hence, hexahedron solid 95 is suitable 
for analysis of nodal stress interpolation along relatively straight path. 
 
 

 
Fig 21: 3-layered FEM model 
 

 
Fig 22: Shear stress SXZ distribution for 3-layered FEM model 
 



 28

 
Fig 23: 5-layered FEM model 
 

 
Fig 24: Shear stress SXZ distribution for 5-layered FEM model  
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3.3.5 Relationship between the site of crack initiation and the maximum 
principal stress 

 
The determination of the crack initiation site is not simple, but can be inferred to a 
certain extent with the aid of fractography and FEM analysis. For brittle material, 
the maximum principal stress is often used as the fracture criterion: i.e. failure is 
expected when the largest principal normal stress reaches the uniaxial strength of 
the material expressed below in equation (17): 
 

1 2 3( , , )   fracture MAX at fractureσ σ σ σ=    -----------------(17) 
(Assumption: tensile strength and compressive strength is the same) 
 
If there is a single type flaw of a particular size (uniform flaw distribution at all 
locations) and the geometry of the stressed specimen is simple (for instance, a 
straight rectangular beam with no fillet), one could say that the crack initiation site 
would coincide with the location of the maximum principal stress along the edge 
length of the beam. 
 
However, in reality, the flaw exhibits a non-uniform size distribution (size PDF) and 
orientation PDF. As a result, the location of the crack initiation site may not 
coincide with the location of maximum principal stress. For instance, a particular 
location may show a maximum principal stress when stressed. The site of crack 
initiation may be at another location where a more critical flaw exists but exhibits a 
lower principal stress. 
 
Hence, the use of the maximum principal stress as the prediction of the crack 
initiation stress could be an over-estimation of the actual crack initiation stress. 
From a design point of view, if one were to assume a higher strength distribution 
when the actual strength distribution is lower, one will underestimate the failure 
probability, which could be detrimental. However, if the flaw distribution is not 
highly skewed in the region of consideration, the use of the maximum principal 
stress is appropriate . 
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3.3.6 Degree of fineness of mesh 
 

 
Fig 25: Fine mesh 
 

 
Fig 26: Rough mesh 
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Fig 27: Stress comparison for different levels of meshing (combined loading 
240um) along the path indicated 
 
There seems to be an overestimation of the principal stress when the mesh is 
rough. For consistency, the same meshing is used for the submodels in different 
parts of the wafer. 
 
 
3.3.7 Anisotropic material constant for silicon 
 
The general Hooke’s law is given as: 
 

ij ijkl klCσ ε=                 --------------------(18) 
 

ij ijkl klSε σ=                  --------------------(19) 
 
whereby , , , 1,2,3i j k l =  

ijσ : Stress tensor (9 components) 

klε : Strain tensor (9 components) 

ijklC : Stiffness coefficient (81 components) 

ijklS : Compliance coefficient (81 components) 
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Stiffness matrix of cubic crystal for (001) orientation: 
 

1 111 12 12

2 212 11 12

3 312 12 11

4 444

5 544

6 644

0 0 0

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

C C C

C C C
C C C

C
C

C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

    
    
    
    

=    
    
    
    

        

    --------------------(20) 

 
ijσ : Stress tensor (6 components): 

1 11

2 22

3 33

4 23 32

5 13 31

6 12 21

σ σ

σ σ
σ σ

σ σ σ
σ σ σ

σ σ σ

=

=
=

= =
= =

= =

                            --------------------(21) 

 
ijε : Stress tensor (6 components): 

1 11

2 22

3 33

4 23 32

5 13 31

6 12 21

ε ε
ε ε

ε ε

ε ε ε
ε ε ε

ε ε ε

=
=

=

= =
= =

= =

                  --------------------(22) 

 
ijklC : Stiffness coefficient (3 components) 

( ) ( )

11 1,
22 2

33 3

23 4
13 5

12 6

ijkl mnC C

ij kl m n

=

→
→
→
→
→
→
→

                   --------------------(23) 
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Compliance matrix of cubic crystal: 
 

1 111 12 12

2 212 11 12

3 312 12 11

4 444

5 544

6 644

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

S S S
S S S
S S S

S
S

S

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ

    
    
    
    

=    
    
    
    

        

     --------------------(24) 

 
Compliance coefficient on silicon (001) rotated in the [001] direction as shown in 
the Fig 28 below: 
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
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

 

-----------(25) 
 

 
Fig 28: Diagram showing rotation in the [001] direction
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(Note for this research, θ is taken to be 45°) 
To substitute into the Ansys FEM software, some adjustments have to be made: 
 

( )

( )

( )

( )

( )

( )

2
11

11

2

12

2

11

12 12

2
11

11

12 12

2
11
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2
44 44

1 1
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1
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2
1

sin 2
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1

sin 2
2

;
1

sin 2
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;
1
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1 1
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2 sin 2

x y z

C

C

xy yx

C

xz zx

C

yz zy

C

yz xz xy

C

E E E
SS S

S S

S S

S S
SS S

S S
SS S

G G G
S S S

θ

θ
υ υ

θ

υ υ
θ

υ υ
θ

θ

= = =
−   
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= =

−   

= =
−   

= =
−   

= =
+   

   --------------------(26) 

Note that:  
 

xy yx

xz zx

yz zy

ν ν

ν ν
ν ν

=

≠
≠

           --------------------(27) 

 
 

, , , , ,x y z xy yz xzE E E ν ν ν  were calculated using the above formula (refer to equation 
(26) ) and then substituted into the material constant in the Ansys FEM model. 
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3.3.8 Limitations of FEM analysis 
 
Although computational methods such as FEM analysis are very useful in fields 
like fracture mechanics, they cannot replace experiments. A numerical fracture 
simulation of a cracked body can compute crack tip parameters, but such as 
analysis alone cannot predict when fracture will occur. FEM analysis replies on 
continuum theory. A continuum does not contain voids, microcracks, second-
phase particles, grain boundaries, dislocations, atoms, or any of the other 
microscopic or submicroscopic features that control fracture behavior in 
engineering materials. 
 
A numerical analysis of a cracked body can provide information on local stresses 
and strains at the crack tip, as well as global fracture parameters. Existing 
analyses, however, model only the deformation of the material. Fracture can be 
modeled, but a separate fracture criterion is required. For example, one might 
model cleavage fracture by imposing a stress-based failure criterion, in which the 
analysis would predict failure when a user-specified stress is reached at a 
particular point ahead of the crack tip. Predictions of fracture could not be made a 
prior in such cases, but would require one or more experiments to infer material-
dependent parameters in the local fracture model. 
 
Several researchers have attempted to combine flow and fracture behavior into a 
single constitutive  model, and have incorporated such approaches into finite 
element analyses. The Gurson model, for instance, was intended to model both 
plastic flow and ductile fracture in metals. Because this approach is a continuum 
model and does not include voids, however, it does not capture the important 
microscopic events that lead to fracture, and it is unable to predict failure in real 
materials. A number of adjustable parameters have recently been added to this 
model in order to bring predictions in line with experimental data, but such 
parameters are based on curve fitting rather than sound physics. 
 
Numerical analysis will undoubtedly play a major role in developing 
micromechanical models for fracture. Computer simulation of processes such as 
microcrack nucleation, void growth, and interface fracture should lead to new 
insights into fracture and damage mechanisms. Such research may then lead to 
rational failure criteria that can be incorporated into global continuum models of 
cracked bodies. 
 
Computer modeling cannot replace experimentation. Any mathematical 
model, regardless of how sophisticated it is, will omit much of the real world 
in its formulation. Unlike a mathematical model, an experiment is obliged to 
obey all laws of nature, down to the quantum level. Thus, an experiment 
often conveys important information that a simulation overlooks. 
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3.4 Bayesian reliability analysis 
 
3.4.1 Introduction 
 
  Bayesian parameter estimation is a method often used to estimate parameter 
when there is insufficient data. A prior PDF (probability density function) is first 
assumed for the unknown parameter. Then, this prior PDF together with sample 
data are used to obtain the posterior PDF. Because there is much freedom in 
choosing the prior PDF, Bayesian reliability is often criticized as being subjective. 
The general formula for Bayesian analysis is shown below in equation (28): 
 

0
1

0

(  |  ) ( )
( ) (  |  )

(  |  ) ( ) 

P A f
f f A

P A f d

θ θ
θ θ

θ θ θ
= =

∫
    --------------------(28) 

 
0( )f θ : Prior PDF 

1( )f θ Or (  |  )f Aθ : posterior PDF (PDF given that event A has occurred) 
(  |  )P A θ : Probability of event A given a certain value of parameter 

θ : Unknown parameter to be estimated 
 
  For example, assuming that 

1
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n

i
i

P A g x dxθ θ
=

= ∏  whereby ( | )g x θ  is the 

PDF of a variable x (for instance, fatigue life) and ix is the sample data for the 
variable x. Then, the posterior PDF can be written as shown below in equation 
(29): 
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    --------------------(29) 

 
 A Bayesian analysis combines prior information about model parameters with 
information from observed data, thereby generating a posterior distribution. Such 
an analysis requires two inputs, namely the prior distribution and the likelihood 
function. The prior distribution can be chosen to represent the beliefs of the 
researcher before observing the results of an experiment; this results in a 
subjective Bayesian analysis. Often, however, it is difficult for a researcher to 
specify prior beliefs about model parameters, and  to cast them into the form of a 
prior probability distribution.   
 
Thus, one problem with Bayesian reliability analysis is what prior PDF to assume. 
Very often, conjugate prior is used because of simpler mathematical computation. 
A noteworthy point is that conjugate PDF is assumed only to simplify the 
mathematical computation and if some other forms of prior PDF are more 
appropriate, such prior PDF should be used instead. 
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3.4.2 Non-informative prior12 
 
In Bayesian statistics, the choice of the prior distribution is often controversial. In 
the absence of strong prior evidence or opinion, it is intuitively instructive to 
assume a “non-informative prior” for the prior PDF. A noninformative prior is a 
function, which is used in place of a subjective prior distribution when little or no 
prior information is available. The term “noninformative" is used to connote the 
lack of subjective beliefs used in formulating such a prior. Intuitively speaking, a 
prior distribution is non-informative if the prior is “flat” relative to the maximum 
likelihood function and if it has minimal impact on the posterior PDF of the 
unknown parameter. A noteworthy point is that a non-informative prior is not 
always the same thing as a flat uniform distribution. 
 
An important property to be satisfied by a noninformative prior is the local 
uniformity property: the prior does not change very much over the region in 
which the likelihood is appreciable and does not assume large values outside that 
range. Jeffrey’s prior is a prior that satisfies this property and is based on the 
Fisher information matrix. Furthermore, it is invariant to transformation of the 
parameter vector. This is the most important property of the Jeffrey’s prior. 
   
  The fisher information matrix is defined as shown below in equation (30):  
 

 
2 log ( | )

( )
i j p p

p x
I E

θ
θ

θ θ
×

 ∂
= −  

∂ ∂  
    --------------------(30) 

 
whereby θ is a (p x 1) vector and ( )I θ is a (p x p) matrix. (x: variable; θ:  
parameter ). 
   
Jeffrey’s prior is defined as shown in equation (31) below: 
 

1
2( ) ( )Iπ θ θ∝        --------------------(31) 

 
  In spite of its success in one-parameter problems, the Jeffrey’s prior is often 
seriously deficient in multi-parameter problems. To overcome the deficiencies of 
using the Jeffrey’s prior, reference prior approach has been developed. The 
reference prior method introduced by Bernardo (1979) and further described by 
Berger and Bernardo (1992), was motivated by the notion of maximizing the 
expected amount of information about θ provided by the data, x. The amount of 
information provided by the experiment is quantified by the Kullback-Liebler 
divergence, which is defined by equation (32): 
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  A prior that maximizes the expected value of the Kullback-Liebler divergence is 
then formulated as shown below in equation (33): 
 

( )( | ), ( )E D xπ θ π θ         --------------------(33) 

 
  The posterior PDF of Weibull modulus and scale parameter based on the 
reference prior approach are given below in equations (34) and (35): 
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{ }1 2, ,.........,n nX X X X=  : Data 
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∞ − −Γ = >∫  : Gamma function 

 
θ : Scale parameter 
 
β : Weibull modulus 
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3.4.3 Effectiveness of the Bayesian method with respect to the MLM 
(maximum likelihood method) 

 
The effectiveness of the Bayesian method with respect to the maximum likelihood 
method is compared and the results are shown in Table 1 and Table 2. [Note: The 
underlying parameter values are 700 for the scale parameter and 10 for the 
Weibull modulus.] In the absence of sufficient data (less than 10 samples), the 
Weibull modulus was more efficiently estimated by the Bayesian method. In the 
case of the scale parameter, no noticeable difference could be observed. 
 
Table 1: Comparison between Bayesian and MLM (absolute value) 

Scale parameter Weibull modulus No of 
data Bayesian MLM Bayesian MLM 

2 680 669 NA 23.7 
4 660 657 13.9 20.9 
6 680 686 12.5 15.8 
8 740 728 9.3 10.9 

10 720 728 10.5 11.9 
15 720 712 10 10.9 
20 700 696 8.6 9.15 
25 700 701 9.7 10.2 

 
Table 2: Comparison between Bayesian and MLM (%value) 

Scale parameter Weibull modulus No of 
data Bayesian MLM Bayesian MLM 

4 94.3 93.9 139.0 209.0 
6 97.1 98.0 125.0 158.0 
8 105.7 104.0 93.0 109.0 

10 102.9 104.0 105.0 119.0 
15 102.9 101.7 100.0 109.0 
20 100.0 99.4 86.0 91.5 
25 100.0 100.1 97.0 102.0 

When there is a need to obtain information regarding parameters from few 
experiment data, the Bayesian method is effective. Posterior PDF obtained from 
an actual prior subjective opinion can then be compared with those derived from a 
non-informative prior so as to assess the relative importance of the initial opinions 
on the final inference.  
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3.5 St. Venant torsion theory 
 

 
Fig 29: Representation of general long prismatic rod (note: length l >> dimensions 
in the X and Y directions) 
 
The classical torsion theory considers a long prismatic rod (Fig 29) whereby the 
length dimension is much greater than the cross-sectional dimensions. 
Furthermore, it does not consider how the end torque is applied. This is related to 
the Saint-Venant’s principle. 
 
Important geometrical assumptions made in the classical torsion theory: 
 

• Each cross-section rotates as a rigid body (no distortion of the cross-section 
shape in the x and y direction) 

• Rate of twist, k is constant 
• Cross-sections are free to warp in the z-direction but the warping is the 

same for all cross-sections. (Warping: extensional deformation in the 
direction of the axis about which the torque is applied.) 

 
Problems of applying the classical torsion theory to actual problems: 
 

• In reality, the member under the influence of force will have to be 
constrained in certain ways and the method of application of the end 
torque will have significant influences on the stress distribution in the 
beam. 

• Prediction of the stress distribution near the end constraint will highly 
depend on the member geometry at the end constraint and FEM 
analysis should be used. 

• Moreover, the length dimension of the prismatic bar has to be 
sufficiently long compared to the cross-sectional dimensions. However, 

X, Y, and Z: 
directions 
 
u,v,w : 
displacement 
direction 
 
l : length of 
prismatic beam 
 
T: end torques 
applied to beam 
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how long the length dimension should be is not specified explicitly in the 
classical torsion theory. 

• In addition, beam section of the test specimen is not prismatic due to the 
presence of the “R” at the end of the beam designed to avoid stress 
concentrations. 

 
At distance away from the end constraint (stress distribution at the 
center of the beam), stress distribution of the member subjected to 
torsional loading can still be predicted by the classical torsion theory. 

 
 
3.6 Saint-Venant’s principle 

 

 
Fig 30: Saint-Venant’s principle 
 
With rare exceptions, this principle applies to linearly elastic bodies of all types. To 
understand Saint-Venant’s principle, imagine that we have a body with a system of 
loads acting over a small part of its surface. For instance, suppose we have a 
prismatic bar of width b subjected to a system of several concentrated loads acting 
at the end. (Refer to Fig 30) For simplicity, assume that the loads are symmetrical 
and have a vertical resultant. Next, consider a different but statically equivalent 
load system acting over the same small region of the bar. “Statically equivalent 
“ means that the two load systems have the same force resultant and same 
moment resultant. Saint-Venant’s principle states that the stresses in the body 
caused by either of the two systems of loading are the same, provided we move 
away from the loaded region a distance at least equal to the largest dimension of 
the loaded region. This principle  is not a rigorous law of mechanics but is a 
common-sense observation based upon theoretical and practical experience. 
 
Saint-Venant’s principle has great practical significance in the design and analysis 
of structures encountered in the mechanics of materials. Because the effects of 
stress concentrations are localized and have little effect on the overall behavior of 
a member, we can use all of the  standard stress formulas at cross sections a 
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sufficient distance away from the source of the concentration. Close to the source, 
the stresses depend upon the details of the loading and the shape of the member. 
 
 
3.7 Safety design in the context of reliability engineering 
 
3.7.1 Introduction to Crystal Ball 
 
Crystal Ball is an easy-to-use simulation program that helps you to analyze the 
risks and uncertainties associated with your Excel spreadsheet models. The first 
step to using Crystal Ball is to determine which model inputs are uncertain. Once 
you have identified these, you use your knowledge of the uncertainty around the 
input to create a PDF for that cell (what we call an assumption). The next step is to 
identify a forecast. A forecast is a formula cell that you want to measure and 
analyze. You can define multiple assumptions and forecasts. Once finished, you 
use the Crystal Ball command or toolbar icon to run a simulation. Simulation 
results are displayed in interactive histograms, or frequency charts. 
    
The Developer Kit for Crystal Ball describes many functions that can enhance the 
modeling experience. One of the most useful functions is CB.GetForeStatFN. 
CB.GetForeStatFN calculates a specified statistic for the specified forecast and 
places it in the cell calling the function. The statistics can be fed back to the 
assumption parameters to create a dynamic simulation. 
         
OptQuest is an optimization tool that enhances simulation models by automatically 
searching for and finding optimal solutions. OptQuest surpasses the limitations of 
genetic algorithm optimizers because it uses multiple, complimentary search 
methodologies, including advanced tabu search and scatter search, to help find 
the best global solutions. While running solutions, OptQuest also checks for 
compliance with the constraints and requirements. In addition, OptQuest applies 
adaptive and neural network technologies to help it learn from past optimizations 
so it can achieve better results in less time. 
 

 
Fig 31: Reliability analysis using crystal ball 
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3.7.2 Monte Carlo simulation and importance sampling simulations 
 
The probability of failure for the general case is given by the expression below in 
equation (36):  
 

( 1, 2,......) 0

..... ( 1, 2,.......) failure
g X X

P f X X dx
<

= ∫ ∫    -----------------(36) 

 
( 1, 2,.......)f X X  is the design joint PDF and ( 1, 2,......)g X X  is the limit state function. 

Usually, ( 1, 2,.......)f X X  is a complicated function and the expression of probability of 
failure in a closed form is difficult. Thus, Monte Carlo simulation is often employed. 
The probability of failure can be expressed explicitly in a cell in the Excel sheet 
using the crystal ball function. When one uses Monte Carlo simulation to find the 
occurrence probability of a rare event, it is necessary to run much iteration to get a 
good approximation. To obtain a good approximation in a smaller number of 
iterations, it is advisable to use the importance sampling method.  
 
Monte Carlo method is shown below in equation (37): 
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Importance sampling method is shown below in equation (38): 
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         ----------------(38) 

 
Both the Monte Carlo method and the importance sampling method can be easily 
implemented to find the probability of failure using the Crystal Ball and Excel 
functions. There is no fixed rule for the choice of the function ( )g x  (weight function). 
However, it is advisable to initially run the simulation using the Monte Carlo 
method for a small number of iterations. Then choose the appropriate parameters 
for ( )g x  by observing the PDF initially generated. 
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3.7.3 Proof test of brittle material 
 
Proof test is often used as a means to screen off defective products or products 
with strength less than that stipulated in the proof test. The PDF after the proof test 
should be adjusted upwards or else the initial probability of failure will be 
underestimated. An importance assumption here is that during the proof test 
process, the strength of the product remains static and hence unchanged. 
However, in reality, cracks inherent in the product may propagate during the proof 
test. It has been shown theoretically that samples that pass the proof test have 
strengths less than the proof test level. But this is a small probability event. To 
account for this, probability of failure associated with the screening stress should 
be adjusted upwards accordingly based on the characteristics of the proof test 
such as loading rate, dwell time and unloading rate. If there are uncertainties 
involving the proof test level, they can be modelled by a 2nd order random variable. 
 

 
Fig. 32: PDF of product strength before and after proof test, and setting of the 2nd 
order random variable for the cut-off stress (proof test level) 
 
It should be noted that proof test be performed on the final form of the 
product. 
 
 
3.7.4 Dynamic simulation 
 
The concept of time can be introduced in a number of ways. In crystal ball, the 
passage of time can be monitored by means of the number of iterations. However, 
the relationship between the simulation time unit and the actual real time unit has 
to be determined. For instance, both the strength and stress can be modeled using 
normal PDF. As time passes by (number of iterations increase), the mean of the 
strength distribution decreases linearly. On the other hand, the mean of the stress 
distribution is assumed constant. As the mean of the strength distribution 
decreases, the failure probability increases until it stabilizes at a certain value. The 
fact that the simulation results can be extracted using the Crystal Ball functions 
enables one to modify the input pdf based on the output results to create a 
dynamic simulation. 
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Fig 33: An example of a dynamic simulation in which the stress and strength PDF 
parameters (mean and standard deviation) change over time 
 
 
3.7.5 Probabilistic  design 
 
Probabilistic Design is a technique you can use to assess the effect of uncertain 
input parameters and assumptions on your analysis model. Probabilistic design 
can be used to determine the effect of one or more variables on the outcome of 
the analysis.  
Using a probabilistic analysis you can find out how much the results of a finite 
element analysis are affected by uncertainties in the model. An uncertainty or 
random quantity is a parameter where it is impossible to tell the exact value at a 
given point in time (if it is time dependent) or at a given location (if it is location 
dependent). One example of this is ambient temperature, where you never know 
exactly what the temperature will be one week from now in a certain city. In a 
probabilistic analysis these uncertain parameters are described by statistical 
distribution functions such as the Gaussian or normal distribution, the uniform 
distribution, etc.  
 
Computer models are expressed and described with specific numerical and 
deterministic values; material properties are entered using certain values, the 
geometry of the component is assigned a certain length or width, etc. An analysis 
based on a given set of specific numbers and values is called a deterministic 
analysis. Naturally, the results of a deterministic analysis are only as good as the 
assumptions and input values used for the analysis. The validity of those results 
depends on how correct the values were for the component under real life 
conditions. 
In reality, literally every aspect of an analysis model is subjected to scatter (in 
other words, is uncertain in some way). Material property values are different if 
one specimen is compared to the next. This kind of scatter is inherent for materials 
and varies among different material types and material properties. For example, 
the scatter of the Young's modulus for many materials can often be described as a 
Gaussian distribution with standard deviation of ±3 - 5%. Likewise, the geometric 
properties of components can only be reproduced within certain manufacturing 
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tolerances. The same variation holds true for the loads that are applied to a finite 
element model. However, in this case the uncertainty is often due to a lack of 
engineering knowledge. For example, at elevated temperatures the heat transfer 
coefficients are very important in a thermal analysis, yet it is almost impossible to 
measure the heat transfer coefficients. This means that almost all input 
parameters used in a finite element analysis are inexact, each associated with 
some degree of uncertainty. 
 
It is neither physically possible nor financially acceptable to eliminate the scatter of 
input parameters completely. The reduction of scatter is typically associated with 
higher costs either through better and more precise manufacturing methods and 
processes or increased efforts in quality control. Hence, accepting the existence of 
scatter and dealing with it rather then trying to eliminate it makes products more 
affordable and production of those products more cost effective. If the input 
variables of a finite element model are subjected to scatter, how large is the 
scatter of the output parameters? How robust are the output parameters? 
Examples are the temperature, stress, strain, or deflection at a node, the 
maximum temperature, stress, strain, or deflection of the model, etc. If the output 
is subjected to scatter due to the variation of the input variables, then what is the 
probability that a design criterion given for the output parameters is no longer met? 
How large is the probability that an unexpected and unwanted event takes place 
(what is the failure probability)? Which input variables contribute the most to the 
scatter of an output parameter and to the failure probability? What are the 
sensitivities of the output parameter with respect to the input variables? 
 
 
3.7.6 Traditional (deterministic) vs. probabilistic design analysis methods 
 
In traditional deterministic analyses, uncertainties are either ignored or accounted 
for by applying conservative assumptions. Uncertainties are typically ignored if the 
analyst knows for certain that the input parameter has no effect on the behavior of 
the component under investigation. In this case, only the mean values or some 
nominal values are used in the analysis. However, in some situations the influence 
of uncertainties exists but is still neglected; for example, the Young's modulus 
mentioned above or the thermal expansion coefficient, for which the scatter is 
usually ignored. Let's assume you are performing a thermal analysis and you want 
to evaluate the thermal stresses (thermal stresses are directly proportional to the 
Young's modulus as well as to the thermal expansion coefficient of the material). 
The equation is: 
 

therm E Tσ α= ∆        ----------------(39) 
 
If the Young's modulus alone has a Gaussian distribution with a 5% standard 
deviation, then there is almost a 16% chance that the stresses are more than 5% 
higher than what you would think they are in a deterministic case. This figure 
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increases if you also take into account that, typically, the thermal expansion 
coefficient also follows a Gaussian distribution. 
 
Table 3: Differences in results between deterministic and probabilistic design 

Random Input Variables taken 
into account 

Probability that the 
thermal stresses are 
more than 5% higher 

than expected 

Probability that the 
thermal stresses are 

more than 10% higher 
than expected 

Young's modulus (Gaussian 
distribution with 5% standard 

deviation) 
~16% ~2.3% 

Young's modulus and thermal 
expansion coefficient (each with 
Gaussian distribution with 5% 

standard deviation) 

~22% ~8% 

 
When a conservative assumption is used, this actually tells you that uncertainty or 
randomness is involved. Conservative assumptions are usually expressed in terms 
of safety factors. Sometimes regulatory bodies demand safety factors in certain 
procedural codes. If you are not faced with such restrictions or demands, then 
using conservative assumptions and safety factors can lead to inefficient and 
costly over-design. You can avoid over-design by using probabilistic methods 
while still ensuring the safety of the component. 
 
Probabilistic methods even enable you to quantify the safety of the component by 
providing a probability that the component will survive operating conditions. 
Quantifying a goal is the necessary first step toward achieving it. Probabilistic 
methods can tell you how to achieve your goal. 
 
 
3.7.7 Surface response method 
  
Surface response method is a modern technique for sequentially optimizing 
process parameters to optimize process response. For instance, determine the 
level of temperature X1 and pressure X2 that maximizes the yield Y of a process. 
If data follows a flat surface, a first order model (equation (40)) is usually sufficient: 
 

kk XXXy ββββ ++++= L22110            ------------------(40) 
 
If there is curvature in the data, a first order model would show a significant lack of 
fit, and a higher order model (equation (41) must be used to “mold” to the 
curvature: 
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In industries, experiments are conducted to discover which values of given factor 
variables optimize a response. If each factor is measured at three or more values, 
a quadratic response surface can be estimated by least-squares regression. The 
predicted optimal value can be found from the estimated surface if the surface is 
shaped like a simple hill or a valley. If the estimated surface is more complicated, 
or if the predicted optimum is far from the region of experimentation, then the 
shape of the surface can be analyzed to indicate the directions in which new 
experiments should be performed. 
 
Suppose that a response variable y is measured at combinations of values of two 
factor variables, x1 and x2. The quadratic response-surface model for this variable 
is written as shown in equation (42): 
 

2 2
0 1 1 2 2 3 1 4 2 5 1 2y x x x x x xβ β β β β β ε= + + + + + +      -------------(42) 

 
The steps in the analysis for such data are  

• Model fitting and analysis of variance to estimate parameters  
• Canonical analysis to investigate the shape of the predicted response 

surface  
• Ridge analysis to search for the region of optimum response  

 
The first task in analyzing the response surface is to estimate the parameters of 
the model by least-squares regression and to obtain information about the fit in the 
form of an analysis of variance. The estimated surface is typically curved: a "hill" 
whose peak occurs at the unique estimated point of maximum response, a 
"valley," or a "saddle-surface" with no unique minimum or maximum. Use the 
results of this phase of the analysis to answer the following questions:  

• What is the contribution of each type of effect -linear, quadratic, and 
crossproduct -to the statistical fit? The ANOVA table with sources labeled 
"Regression" addresses this question.  

• What part of the residual error is due to lack of fit? Does the quadratic 
response model adequately represent the true response surface?  

• What is the contribution of each factor variable to the statistical fit? Can the 
response be predicted as well if the variable is removed?  

• What are the predicted responses for a grid of factor values?  
 

The second task in analyzing the response surface is to examine the overall shape 
of the curve and determine whether the estimated stationary point is a maximum, 
a minimum, or a saddle point. The canonical analysis can be used to answer the 
following questions:  

• Is the surface shaped like a hill, a valley, a saddle surface, or a flat surface?  
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• If there is a unique optimum combination of factor values, where is it?  
• To which factor or factors are the predicted responses most sensitive?  
 

The eigenvalues and eigenvectors in the matrix of second-order parameters 
characterize the shape of the response surface. The eigenvectors point in the 
directions of principle orientation for the surface, and the signs and magnitudes of 
the associated eigenvalues give the shape of the surface in these directions. 
Positive eigenvalues indicate directions of upward curvature, and negative 
eigenvalues indicate directions of downward curvature. The larger an eigenvalue 
is in absolute value, the more pronounced is the curvature of the response surface 
in the associated direction. Often, all of the coefficients of an eigenvector except 
for one are relatively small, indicating that the vector points roughly along the axis 
associated with the factor corresponding to the single large coefficient. In this case, 
the canonical analysis can be used to determine the relative sensitivity of the 
predicted response surface to variations in that factor.  
 
If the estimated surface is found to have a simple optimum well within the range of 
experimentation, the analysis performed by the preceding two steps may be 
sufficient. In more complicated situations, further search for the region of optimum 
response is required. The method of ridge analysis computes the estimated ridge 
of optimum response for increasing radii from the center of the original design. The 
ridge analysis answers the following question: If there is not a unique optimum of 
the response surface within the range of experimentation, in which direction 
should further searching be done in order to locate the optimum?  
 
In this research, the relationship between the design stress (output: 
dependent variable) and the displacement (input: independent) is to be 
determined. Since there is only one independent variable, a simple 
regression analysis is all that is needed to obtain the relationship between 
the design stress and displacement.  
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4 Design of test specimen 
 
4.1 Overview 
 
Since it is almost impossible to perform a pure torsional test experimentally, the 
stress ratio (to be defined later in the discussion) will be maximized, and 
combined loading will be performed and the effect of pure torsional loading 
extrapolated based on the load factor analysis (refer to Theory). Pure bending 
test is first accomplished by depressing the specimen at location A (Refer to Fig 
34), and then combined loading test by depressing the specimen at location B. 
The effect of self-weight could be neglected based on FEM analysis. Two main 
factors have to be considered when designing a specimen for micro testing: 
experimental and mechanical considerations. 
 
 
4.2 Experimental considerations 
 
 The load cell has a maximum capacity of 5N (note: now 1N and 2.5N load cells 
are available) and the applied load can be measured to within ±1% of its value. 
The range of the LDM (laser displacement meter) about 600um and its accuracy is 
0.5um. Here, the slowest testing speed of 0.5mm/min is used in order to get the 
maximum number of sampling results. Next, the rotational angle cannot be too 
large or slippage of the loading needle may occur. Moreover, if the rotation angle 
is too large, curvature shortening may lead to unwanted tensile forces acting on 
the beams. The maximum rotational angle is preferably taken to be 30°. In the 
design process, the center deflection is taken to be in the order of 100um and the 
edge deflection in the order of 1mm.  
 
 
4.3 Mechanical considerations 
 
 

 
Fig. 34: Representation of the beam 
 
 

2a: Height of beam 
2b: Width of beam 
c: Length of plate 
d: Width of plate 
L: Length of beam 
θ: Rotational angle 
G: Shear modulus 
 
A: Midpoint of plate 
B: Edge of plate (at a distance of c 
from A) 
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It has to be ensured that the specimen fails under torsional loading. The shear 
stress due to torsion can be expressed as a function of a, b, θ, L and G. (Refer to 
Fig. 34) The normal stress due to flexure can be expressed as a function of a, b, c, 
d,θ, L and G. When the ratio of the shear stress to the normal stress is taken, θ 
and G are being cancelled out. Thus, the stress ratio (ratio of maximum shear 
stress to maximum normal stress, irrespective of location in the beam) depends on 
a, b, c, d and L.  
 
 
4.4  Stress ratio 

 
The stress ratio is defined as ratio of maximum shear stress to maximum normal 
stress, irrespective of location in the beam. It can be considered a measure of the 
intensity of shear stress in the beam with respect to the normal stress. At the time 
of design of test specimen, the flaw population (distribution and orientation) is still 
unclear. Hence, the stress ratio is considered irrespective of the location in the 
beam. The stress ratio is defined below as shown in equation (43): 
 

max

max

t
stress ratio = 

s            -------------------(43) 

 

  ( , , , , )stress ratio function a b c d L∝      -------------------(44) 
 
It can be shown that stress ratio is a function of a, b, c, d and L. (equation (44)) 
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4.5 Maximum shear stress calculation 
 
Maximum fictitious shear stress, Fτ , due to torsion alone (equation (45): 
 

2 3 4
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1 0.6095 0.8865 1.8023 0.9100
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T a a a a
ba b b b b
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        = + + − +        

         
------

--------------------------------------------------------------------------------------------------------(45) 
at the midpoint of each longer side for b ≥ a. 
 
Shear stress due to transverse stress, Tτ  (equation (46): 
 

2
8T

F F
A ab

τ = =                      -------------------(46) 

 
Total maximum shear stress, maxτ  (equation (47): 
 

max T Fτ τ τ= +                   -------------------(47) 
 
If the transverse shear, Tτ , is negligible compared to the fictitious shear stress, Fτ , 
the maximum shear stress can be expressed in the following form (equation (48): 
 

1
max

( , )G f a b
L

θτ :             -------------------(48) 

whereby 1( , )f a b  is a function of dimension  a and b. 
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4.6 Maximum normal tensile stress calculation 
 
Due to warping, the longitudinal fibers are stretched, and the longitudinal stretch 
generates a warping tensile stress, warpσ  proportional to 

2

Fτ  is given by 
equation (49): 
 

22

212
F

warp
E b

G a
τσ  =  

 
          -------------------(49) 

 
Flexural stress due to bending, flexσ  is given by equation (50): 

 

2

3.
4flex

M
a b

σ = ±           -------------------(50) 

 
whereby moment, M, at the edge of the beam (since the beams are constrained, 
maximum flexure stress will occur at the edge of the beam) is given by equation 
(51): 
 

(2 ) (2 )
8 4

F L d L d kGM
Lc

θ+ += =          -------------------(51) 

 
Total maximum normal tensile stress, maxσ  is given by equation (52): 
 

max warp flexσ σ σ= +           -------------------(52) 
 
If the warping tensile stress is negligible compared to the flexural stress, the 
maximum normal tensile stress can be expressed as shown in equation (53): 
 

2
max

( , , , )G f a b L d
c

θ
σ :           -------------------(53) 

 
whereby 2( , , , )f a b L d is a function of dimension  a and b. 
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4.7 Torque calculation 
 
Geometric factor, k, is given by equation (54): 
 

4
3

4

16
3.36 1

3 12
a a

k ba
b b

  
= − −  

              -------------------(54) 

(Refer to Fig 34; note that b]a) 
 
This geometric factor, k, can be used to calculate the fictitious torque FT  induced 
by the applied rotation, θ, and generated by shear stress alone. The fictitious 
torque, due to torsion alone and neglecting the additional torque due to the end 
constraints is given by equation (55): 
 

FT KG
L
θ

=           -------------------(55) 

 
Fiber elongation torque, ET , is given by equation (56): 
 

3
58

45ET E ab
L
θ =  

 
          -------------------(56) 

 
The actual reaction torque, AT , is given by equation (57): 
 

2( )A F ET T T= +    (Due to symmetry)          -------------------(57) 
 
 
4.8 Points to be noted in the design process 
 
The normal and shear stresses are calculated based on the linear elasticity 
theories. In reality, the test specimen may undergo large displacement and 
geometric nonlinearity will have to be considered. Moreover, in the design process, 
the test specimen is assumed prismatic. In reality, the test specimen is non-
prismatic and has fillets at its edges to prevent stress concentration. Besides, in 
the design process, it is assumed that the material is isotropic. However, in reality, 
silicon is anisotropic and material properties will vary with directions. In view of 
these problems encountered in the design process, it is advisable to employ FEM 
analysis in the design process. However, detailed FEM modeling and analysis will 
require much computational time and as such in time-constrained circumstances, 
only simple theories will be used in the design process. 
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4.9 Excel sheet calculation 
 

 
Fig 35: Excel sheet employed in the design process 

 
The excel sheet is a useful tool that can be used in the design process. Some of 
the commonly used excel functions are “Table” and “Solver”.  

Table function: A data table is a range of cells that shows how changing certain 
values in your formula affects the results of the formulas. Data tables provide a 
shortcut for calculating multiple versions in one operation and a way to view and 
compare the results of all of the different variations together on your worksheet. 

Solver function: You can also determine resulting values when you need to 
change more than one cell used in a formula and have multiple constraints for 
those values. Solver adjusts the values in the cells you specify to produce the 
result you want from the formula. Moreover, one can use the solver function to 
perform simple linear and nonlinear optimization calculations.  
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Table 4: A typical Excel sheet calculation (for the case of 240um beam rotated 
through an angle of 15°) 

Shear stress [MPa] 987.44 

Normal stress [MPa] 207.75 

Force [N] 0.25 

% Force 4.99 

Center deflection [um] 27.70 

Edge deflection [mm] 2.62 

Stress ratio 4.75 

 
 
Table 5: A typical Excel sheet calculation using the Table Function showing the 
stress ratio for various a and b combinations ( a: column ; b: row) 
  0.05  0.06  0.07  0.08  0.09  0.10  0.11  0.12  
0.05  5.35  5.06  4.89  4.75  4.63  4.53  4.43  4.35  
0.06  5.94  5.35  5.10  4.94  4.82  4.71  4.61  4.53  
0.07  7.14  5.81  5.35  5.13  4.98  4.87  4.77  4.68  
0.08  9.42  6.64  5.72  5.35  5.15  5.02  4.91  4.82  
0.09  13.37  8.11  6.35  5.66  5.35  5.17  5.04  4.94  
0.10  19.69  10.52  7.38  6.16  5.62  5.35  5.18  5.06  
0.11  29.19  14.24  9.01  6.94  6.03  5.59  5.35  5.19  
0.12  42.82  19.69  11.43  8.11  6.64  5.94  5.56  5.35  
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4.10 Final dimensions of beams 
 
The final dimensions of the beam are as follow:  
 
2a=150um;  
2b=240 and 300um;  
c=10mm;  
d=2mm  
L=2mm. 
 
 

 
Fig 36: Test specimens on wafer (note: 36 test specimens on one wafer, 18 
specimens of each type) 
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5 Experimental apparatus and procedures 
 
5.1 Experimental setup 
 
5.1.1 Introduction 
 
In this research, (refer to Fig 37 and Fig 38) a 5N load cell was used and the 
needle moved downwards at a speed of 0.5mm/min towards the sample on the 
wafer and depressed it downward. The wafer is placed on a wafer holder. The 
downward displacement of the sample is measured by the LDM (laser 
displacement meter) placed underneath the wafer. The CCD camera is used for 
observing the site of depression to ensure that the needle fits into the hole in the 
sample. The force (load cell) and displacement (LDM and EZTest displacement) 
until the point of fracture are recorded simultaneously by a proprietary software in 
the PC. 
 

 
Fig 37: Experimental setup 
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Fig 38: A schematic diagram showing the experimental setup 
 
 
5.1.2 Wafers containing the test samples 
 
4-inch (100)-oriented 150/1/400um thick SOI wafers were used. Bulking silicon 
micromachining was performed by means of the ICP-RIE equipment from 
Sumitomo Precision Products. 
 
 
5.1.3 Silicon etching process 
 

 
Fig 39: Passivation step  
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Fig 40: Etching step 1 
 

 
Fig 41: Etching step 2 
 
Passivation step: (refer to fig (39)) At the beginning of each cycle, a 4 8C F  based 
plasma is used to conformally deposit a few monolayers of PTFE-like fluorocarbon 
polymer across all surfaces exposed to the plasma. 
 
Etching step 1: (refer to fig (40)) The plasma gas is then switched to 6SF  to 
create a plasma chemistry that isotropically etches the silicon. Through the 
application of a D.C bias to the platen, ions from the plasma bombard the surface 
of the wafer, removing the polymer. Increased ion energy in the vertical direction 
results in a much higher rate of removal of fluorocarbon polymer from the surfaces 
parallel to the wafer surface.   
 
Etching step 2: (refer to fig (41)) Following selective polymer removal, the silicon 
surface at the base of the trench is exposed to reactive  fluorine-based species that 
isotropically etch the unprotected silicon. The remaining fluorocarbon polymer 
protects the vertical walls of the trench from etching. 
 
By repeating the etching/passivation cycles and carefully controlling the etch time 
during each step, the degree of lateral etch is limited, allowing a trench to be 
etched vertically through the wafer. 
 



 61

Problem of lateral etching: 
 
When reaching the insulator interface, charging of the dielectric surface leads to 
ion deflection that causes breakdown of the passivation at the base of the trench. 
The result of this breakdown is lateral etching known as notching, or “footing”, and 
this is undesirable  for many applications.   
 
 
5.1.4 Apparatus 
 

• ‘EZ TEST’ testing machine from Shimadzu Corporation  
• ‘LC-2400’ LDM (laser displacement meter) from Keyence Corporation  
• Silicon wafer holder (made from Al) 
• Load cell 5N (now 1N and 2.5N available) 
• Artificial wafer used for laser alignment (made from acrylic) 
• Software to process both force and displacement data 
• XY stage and XYZ stage (manual alignment) 
• Data logger  (NS2000 from Keyence Corporation) 
• PC (to display and record load cell and displacement data) 
• CCD camera and flat-screen television (to locate and display the needle) 
• LDM magnetic holder (to hold the LDM firmly to the surface) 
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5.1.5 Alignment of the laser spot 
 

 
Fig 42: Artificial wafer used for laser spot alignment 
 
Fig 42 shows an artificial wafer constructed to aid the laser spot alignment. The 
laser spot alignment is first achieved. Then the artificial wafer is removed and the 
actual wafer containing the specimens is put in its place.  Note that after the laser 
spot alignment, care should be taken to ensure that the LDM magnetic holder is 
not disturbed or else laser spot alignment should be repeated once again. 
 

 
Fig 43: Aligning the position of the laser spot (note that the laser spot is at the tip 
of the needle) 



 63

5.1.6 Estimating the thickness of the wafer 
 

• Direct measurement 
• Interpolation method 
 

Direct measurement: 
 

 
Fig 44: Directly measuring the thickness of wafer using the LDM 
 
 
Interpolation method: 
 
First, construct a displacement distribution function (refer to equation (58) shown 
below) for a range of wafer thickness from the FEM model at various initially 
specified locations on the wafer. 
 

( , , )displacement F t x y=     -----------------------------(58) 
 
whereby x, y are the co-ordinates and t is the wafer thickness. 
 
Then, depress the wafer at various locations and measure the displacement at 
each specified location using the LDM. Using the experimental displacement, 
interpolate the wafer thickness at various locations and obtain the mean wafer 
thickness. The mean wafer thickness obtained in this manner will take into 
account the elastic properties of both the wafer and the testing system.  
 
 



 64

5.1.7 Precautions in performing the test 
 

• As a rough guide (in the case of pure bending), if the laser spot is off the 
point of maximum displacement by 10um, the resulting difference in vertical 
displacement will be only about 0.033um 

• Next, it is noted that the spring constant K (change in force/ change in 
displacement) will not be adversely affected by the misalignment of the 
LDM. 

• Finally, to prevent the slippage of needle during the experiment, it is 
advisable to initially depress the sample lightly several times (with the 
needle in the hole) before the main fracture test. Moreover, this is to also to 
ensure that the needle fits into the hole tightly.  

• To aid easier fractography, it is advisable to label each sample systematic. 
Moreover, the front or back of each specimen should be labeled to enable 
easier recognition. 

• The fixing of the laser spot can be aided by wearing a pair of green 
protective goggles. The green goggles cut off excessive light around the 
main laser spot. 

• Calibration of the load cell should be done before the  commencement of 
any experiment. 

• Voltage drift may lead to slight difference in the LDM values recorded by the 
EZTest software and the data log software. Here, the LDM values from the 
data log software are more reliable and hence should be used instead. 
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5.2 Experimental procedures 
 
 

 
Fig 45: A: pure bending; B: combined loading 
 
 
5.2.1 Pure bending 
 
Firstly, pure bending was performed by applying the force at location A  shown in 
Fig 45. Both the force and displacement (LDM) up to the point of fracture were 
recorded and then used to derive the nominal stresses (maximum principal stress) 
in the beam at the point of failure. 
 
 
5.2.2 Combined loading 
   
Next, combined loading  test was performed by applying force at locations away 
from the mid-point of the plate, for instance at location B shown in Fig 45. Since 
the LDM displacement is not available  as explained earlier in 3.3.1 , bore screw 
displacement from the testing machine (EZTEST) was recorded and used for 
analysis.  
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6 Experimental test results and discussion 
 
6.1 FEM model overview 
 
FEM model was constructed using ANSYS (FEM commercial software). Shell 93 
elements were used to model the bulk of the wafer while hexahedron solid 95 
elements were used to model the specimen in the submodel. In the coarse model, 
boundary conditions were applied to the edge of the wafer such that displacement 
in the z-direction was restricted. Besides, two separate points (refer to Fig (46) 
shown below) on the wafer were further restricted; one was restricted in both the x 
and y directions and the other was restricted in either x or y direction. (Note that if 
only one point was further restricted in both the x and y directions, the wafer will 
rotate about the point). Anisotropic material constant was used and geometrical 
nonlinearity was taken into account. 
 

 
Fig 46: The overall FEM model (note that the submodel is superimposed over the 
coarse model) 
 
 
Important note: the coordinate system in this research will be that shown in 
Fig 46 above.  
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Fig 47: Submodel (constructed using hexahedron solid 95 elements) 
 

 
Fig 48: A typical displacement distribution in the z-direction for pure bending (note 
the nonsymmetrical distribution)  
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Fig 49: A typical principal stress distribution for pure bending (note that the mesh 
on the left beam is much finer than the mesh on the right beam) 
 

 
Fig 50: A typical principal stress distribution for combined loading (note that the 
mesh on the left beam is much finer than the mesh on the right beam) 
 



 69

6.2 Pure bending experimental and FEM results (batch 1; batch 2) 
 
6.2.1 FEM fractured stresses
 
Table 5: Fractured stress for 240um samples (batch 1) 

Sample 
No 

FEM 1 
[MPa] 

FEM 2 
[MPa] 

Matching 
[%] 

1 890 838 94 
2 861 845 98 
3 554 537 97 

11 767 747 97 
12 701 679 97 

 
Table 6: Fractured stress for 300um samples (batch 1) 

Sample 
No 

FEM 1 
[MPa] 

FEM 2 
[MPa] 

Matching 
[%] 

1 743 763 103 
2 671 667 99 
3 504 482 96 

11 742 744 100 
12 631 627 99 

 
Table 7: Fractured stress for 240um samples (batch 2) 
Sample 

No 
FEM 2 
[MPa] 

1 737 
10 811 
11 795 
12 759 
13 732 
15 812 

 
Table 8: Fractured stress for 300um samples (batch 2) 
Sample 

No 
FEM 2 
[MPa] 

10 872 
11 943 
15 591 

Note: 
FEM 1: tetrahedron solid 95 is used to model the beam 
FEM 2: hexahedron solid 95 is used to model the beam 
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6.2.2 Experimental and FEM displacements 
 
Table 9: Displacement for 240um samples (batch 1) 

Sample 
No 

LDM 
disp [um] 

FEM 1 
[um] 

FEM 2 
[um] 

Match b/w 
FEM 1 and 

Exp. 

Match b/w 
FEM 2 and 

Exp. 
1 515 526 494 102 96 
2 497 501 474 101 95 
3 288 291 281 101 98 

11 480 494 468 103 98 
12 401 405 388 101 97 

 
 
Table 10: Displacement for 300um samples (batch 1) 

Sample 
No 

LDM 
disp [um] 

FEM 1 
[um] 

FEM 2 
[um] 

Match b/w 
FEM 1 and 

Exp. 

Match b/w 
FEM 2 and 

Exp. 
1 476 478 453 100 95 
2 NA 401 386 NA NA 
3 257 257 252 100 98 

11 478 486 463 102 97 
12 364 370 359 102 99 

 
 
Table 11: Displacement for 240um samples (batch 2) 

Sample 
No 

LDM 
disp [um] 

FEM 2 
[um] 

Match 
b/w FEM 

1 and 
Exp. 

1 462 445 96 
10 540 521 96 
11 511 493 96 
12 433 427 99 
13 329 333 101 
15 462 434 94 

 
Table 12: Displacement for 300um samples (batch 2) 

Sample 
No 

LDM 
disp [um] 

FEM 2 
[um] 

Match b/w 
FEM 1 and 

Exp. 
10 575 550 96 
11 590 561 95 
15 336 326 97 
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6.3 Combined loading experimental and FEM results (batch 1; batch 2) 
 
6.3.1 FEM fractured stresses 
 
Table 13: Fractured stress for 240um samples (batch 1) 

Sample 
No 

FEM 2 
[MPa] 

2 437 
3 541 
4 447 
5 330 
6 417 
7 438 
8 381 
9 308 

16 399 
17 404 
18 320 

 
 
Table 14: Fractured stress for 300um samples (batch 1) 

Sample 
No 

FEM 2 
[MPa] 

2 359 
3 337 
4 269 
5 199 
6 260 
7 251 
8 224 
9 224 

16 247 
17 221 
18 196 
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Table 15: Fractured stress for 240um samples (batch 2) 
Sample 

No 
FEM 2 
[MPa] 

1 440 

2 580 
3 379 
4 NA 
5 454 
6 599 
7 675 
8 670 
9 598 
10 549 
11 587 
12 529 
13 506 
14 514 
15 455 
16 443 
17 482 
18 NA 
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Table 16: Fractured stress for 300um samples (batch 2) 
Sample 

No 
FEM 2 
[MPa] 

1 310 

2 288 
3 368 
4 285 
5 248 
6 295 
7 280 
8 291 
9 241 
10 333 
11 395 
12 371 
13 391 
14 201 
15 267 
16 340 
17 NA 
18 161 
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6.3.2 Experimental and FEM displacements 
 
Table 17: Displacement for 240um samples (batch 1) 

Sample No 
Bore screw 
disp [um] 

FEM 2 
[um] 

2 2.78 2.803 
3 3.22 3.396 
4 2.65 2.844 
5 2.06 2.126 
6 1.82 1.79 
7 1.94 1.869 
8 1.71 1.63 
9 1.4 1.32 
16 1.71 1.707 
17 1.69 1.721 
18 1.44 1.368 
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Fig 51: Matching of displacement between experiment and FEM for 240um 
combined loading (batch 1) 
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Table 18: Displacement for 300um samples (batch 1) 

Sample No 
Bore screw 
disp [um] 

FEM 2 
[um] 

2 2.68 2.765 
3 2.66 2.599 
4 2.49 2.089 
5 1.97 1.55 
6 1.65 1.33 
7 1.58 1.283 
8 1.44 1.142 
9 1.42 1.127 

16 1.55 1.255 
17 1.43 1.12 
18 1.3 0.989 
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Fig 52: Matching of displacement between experiment and FEM for 300um 
combined loading (batch 1) 
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Table 19: Displacement for 240um samples (batch 2) 

Sample No Bore screw 
disp [um] 

FEM 2 
[um] 

1 2.86 2.83 
2 3.21 3.65 
3 3.01 2.45 
5 2.79 2.86 
6 3.03 3.74 
7 3.19 4.10 
8 3.25 4.07 
9 3.07 3.66 

10 3.42 3.45 
11 3.27 3.68 
12 2.96 3.32 
13 2.87 3.18 
14 3.08 3.21 
15 2.87 2.89 
16 2.86 2.81 
17 2.75 3.03 
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Fig 53: Comparison between the experiment and FEM displacement for 240um 
combined loading (batch 2) 
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Table 20: Fractured stress for 300um samples (batch 2) 

Sample No Bore screw 
disp [um] FEM 2 [um] 

1 2.67 2.42 
2 2.51 2.25 
3 2.82 2.82 
4 2.54 2.20 
5 2.20 1.92 
6 2.56 2.29 
7 2.40 2.18 
8 2.46 2.25 
9 2.25 1.87 

10 2.75 2.58 
11 2.94 3.01 
12 2.59 2.83 
13 2.50 2.96 
14 1.75 1.57 
15 2.40 2.07 
16 2.32 2.60 
18 1.81 1.27 
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Fig 54: Comparison between the experiment and FEM displacement for 300um 
combined loading (batch 2) 
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6.4 Various types of fractured stress plots 
 
6.4.1 Weibull plot for pure bending (240um and 300um samples) 
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Fig 55: Separate Weibull plots for fractured stresses of 240um and 300um pure 
loading. 
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Fig 56: Combined Weibull plot for fractured stresses of 240um (blue) and 300um 
(orange) pure bending samples 
 
From the separate Weibull plots (Fig 56) of the 240um and 300um samples, one 
can see that there is a high possibility that the flaw population in the 240um and 
300um was of the same nature. Thus, a combined Weibull plot is then constructed. 
As can be seen from Fig 56, points for both the 240um and 300um samples fell on 
almost the same line.  
 
[Note: in this research, median ranking is used for evaluating the failure 
probability.] 
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6.4.2 Weibull plot for combined loading (240um and 300um samples) 
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Fig 57: Weibull plot for combined loading fracture stresses (240um and 300um) 
 
 
6.4.3 Fractured stress histogram 
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Fig 58: Fractured stress histograms 
 
From the histogram (Fig 58), there appears to be three separate fractured stress 
distributions, pure bending being the strongest and 300um combined loading the 
weakest.  



 80

6.4.4 Weibull plot with 95% confidence intervals 
 

 
Fig 59: Weibull plot with 95% confidence intervals  
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6.5 Statistical treatment of experimental results 
 
6.5.1 Overview 
 
In this research, the Weibull parameters were estimated using the MLM (maximum 
likelihood method). Moreover, the goodness of fit (whether the distribution is 
indeed Weibull) was investigated by means of parametric (assumption of certain 
distribution) tests. Non-parametric tests (distribution-free) were also used to show 
that there was indeed difference in fractured stresses between the samples in the 
different geometry and loading configurations.  Besides, two-parameter Weibull 
PDF was used to model the fractured stress and 95% confidence intervals were 
constructed by means of both the Bayesian update method and MLM. Both 
methods gave almost the same confidence intervals since both methods will be 
equivalent when there are many sample data. A three-parameter Weibull PDF was 
also used to fit the 240um and 300um combined loading samples and the 
possibility of a 3-parameter Weibull model briefly discussed. 
 
 
6.5.2 Estimation of Weibull parameters 
 
Table 21: MLM estimation of Weibull parameters 

 
Scale 

parameter 
[MPa] 

Weibull 
modulus 

Pure bending 783 7.77 

240um combined 517 5.28 

300um combined 306 4.98 

 
 
Table 22: 95% confidence intervals for Weibull parameters calculated by means of 
the Bayesian update 

95% confidence interval 
 

Scale [MPa] Shape 

240 
combined 475 563 3.70 6.60 

300 
combined 296 330 3.50 6.30 

Pure 
bending 

730 835 4.90 10.15 
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Table 23: 95% confidence intervals for Weibull parameters calculated by means of 
MLM (Maximum likelihood method) 

95% confidence interval 
 

Scale [MPa] Shape 

240 
combined 480 558 3.97 7.03 

300 
combined 

282 331 3.74 6.63 

Pure 
bending 

737 832 5.46 11.06 

 
 
From the Table 22 and Table 23, one can see that the confidence intervals for the 
scale parameter do not overlap with one other. On the other hand, the shape 
(Weibull modulus) parameter for 240 and 300um combined loading overlaps 
largely. The shape parameter for pure bending overlaps to a smaller extent with 
combined loading. 
 
 
6.5.3 Possibility of 3-parameter Weibull model 
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Fig 60: Plot of location parameter versus coefficient of determination for pure 
bending (240um; 300um) 
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Location Parameter vs. R2

Combined loading 240um

-50 0 50 100 150 200 250 300 350

Location Parameter

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
ef
fi
ci
en
t 
of
 D
et
er
mi
na
ti
on
 R

2

 
Fig 61: Plot of location parameter versus coefficient of determination for combined 
loading 240um 
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Fig 62: Plot of location parameter versus coefficient of determination for combined 
loading 300um 
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In the case of pure bending, since from Fig 60, one can see that there is no value 
of location parameter that leads to a maximum R2, the location parameter can be 
taken to be zero. On the other hand, for the cases of 240um and 300um combined 
loading, there exists a location parameter value that leads to a maximum R2. 
(Refer to Fig 61 and 62). Hence, the fracture stresses for 240um and 300um 
combined loading could be modeled by a 3-parameter Weibull parameters. Upon 
fitting a 3-parameter Weibull PDF to 240um and 300um combined loading 
samples, it was found that the both the both the scale and shape parameters 
became even smaller. (Refer to Table 24 and 25) 
 
However, for this research the 2-parameter Weibull model was employed. 
Firstly, this is for simpler calculation. Secondly, there is no theoretical 
evidence that could suggest that a critical stress exists below which no 
fracture could possibly occur. 
 
 
Table 24: 3-parameter Weibull PDF for 240um combined loading. 

 
Point 

estimation 
Standard 

error 
95% confidence 

intervals 
Location 

[MPa] 271.36 20.69 230.81 307.77 

Shape 2.22 0.34 1.64 3.01 
Scale 
[MPa] 232.29 21.12 194.37 277.61 

 
 
Table 25: 3-parameter Weibull PDF for 300um combined loading. 

 
Point 

estimation 
Standard 

error 
95% confidence 

intervals 

Location 
[MPa] 135.30 15.06 105.79 161.48 

Shape 2.53 0.38 1.88 3.40 
Scale 
[MPa] 163.74 12.88 140.36 191.03 
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6.5.4 Parametric tests 
 
A number of different tests have been proposed for evaluating the quality of the fit 
of the Weibull distribution to the observed data.  
 

• Hollander-Proschan test: This test compares the theoretical reliability 
function to the Kaplan-Meier estimate. The Hollander-Proschan test is 
applicable to complete, single-censored, and multiple -censored data sets; 
however, the test may sometimes indicate a poor fit when the data are 
heavily single-censored. The Hollander-Proschan C statistic can be tested 
against the normal distribution.  

 
• Mann-Scheuer-Fertig test: The null hypothesis for this test is that the 

population follows the Weibull distribution with the estimated parameters. 
Nelson (1982) reports this test to have reasonably good power, and this test 
can be applied to Type II censored data .  

 
• Anderson-Darling test: The Anderson-Darling test (Stephens, 1974) is used 

to test if a sample of data came from a population with a specific distribution. 
It is a modification of the Komolgorov-Smirnov (K-S) test and gives more 
weight to the tails than does the K-S test. The K-S test is distribution free in 
the sense that the critical values do not depend on the specific distribution 
being tested. The Anderson-Darling test makes use of the specific 
distribution in calculating critical values. This has the advantage of allowing 
a more sensitive test and the disadvantage that critical values must be 
calculated for each distribution. 

 
• Komolgorov-Smirnov test: An attractive feature of this test is that the 

distribution of the K-S test statistic itself does not depend on the underlying 
cumulative distribution function being tested. Another advantage is that it is 
an exact test (the chi-square goodness-of-fit test depends on an adequate 
sample size for the approximations to be valid). Despite these advantages, 
the K-S test has several important limitations: It only applies to continuous 
distributions. It tends to be more sensitive near the center of the distribution 
than at the tails. Perhaps the most serious limitation is that the distribution 
must be fully specified. That is, if location, scale, and shape parameters are 
estimated from the data, the critical region of the K-S test is no longer valid. 
It typically must be determined by simulation. Due to limitations above, 
many analysts prefer to use the Anderson-Darling goodness-of-fit test. 
However, the Anderson-Darling test is only available for a few specific 
distributions. 

 
 
• Chi-square test: It is used to test if a sample of data came from a population 

with a specific distribution. An attractive feature of the chi-square goodness-
of-fit test is that it can be applied to any univariate distribution for which you 
can calculate the cumulative distribution function. The chi-square 
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goodness-of-fit test is applied to binned data (i.e., data put into classes). 
This is actually not a restriction since for non-binned data you can simply 
calculate a histogram or frequency table before generating the chi-square 
test. However, the values of the chi-square test statistic are dependent on 
how the data is binned. Another disadvantage of the chi-square test is that 
it requires a sufficient sample size in order for the chi-square approximation 
to be valid. The chi-square test is an alternative to the Anderson-Darling 
and Komolgorov-Smirnov goodness-of-fit tests. The chi-square goodness-
of-fit test can be applied to discrete distributions such as the binomial and 
the Poisson. The Komolgorov-Smirnov and Anderson-Darling tests are 
restricted to continuous distributions.  
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6.5.5 Anderson-Darling test 
 
For the Weibull (and Gumbel) distributions, the test statistic, A2 can be calculated 
from equation (59): 
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n − +
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= − − − + −∑          --------------(59) 

 
 w is the CDF for the distribution under consideration. For the Weibull PDF this is 
given in equation (60): 
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whereby α, β, are the shape and scale parameters respectively. 
This formula needs to be modified for small samples (refer to equation (61)): 
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and then compared to an appropriate critical value from the Table 26 below: 
 
Table 26: Critical values for Anderson-Darling test 

Level of 
significance 0.1 0.05 0.025 0.01 

A2
crit 0.637 0.757 0.877 1.038 

 
The test is a one-sided test and the hypothesis that the distribution is of a specific 
form is rejected if the test statistic, A, is greater than the critical value. 
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6.5.6 Results of parametric tests 
 
Table 27: Goodness of fit tests for testing samples. 

Pure bending Combined loading 
240um 

Combined loading 
300um  

Test value P value Test value P value Test value P value 

Hollander-
Proschan -0.048004 .96171 0.239840 .81045 0.229276 .81865 

Mann-
Scheuer-

Fertig 
0.496904 P>.25 NA NA NA NA 

Anderson-
Darling 0.181625 P>.20 0.391253 P>.20 0.364612 P>.20 

 
 
Conclusion: There is statistical evidence to show that the test samples 
indeed follow a Weibull PDF. 
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6.5.7 Non-parametric test 
 
Many statistical tests and procedures are based on specific distributional 
assumptions. The assumption of normality is particularly common in classical 
statistical tests. Much reliability modeling is based on the assumption that the 
distribution of the data follows a Weibull distribution.  
 
There are many non-parametric and robust techniques that are not based on 
strong distributional assumptions. By non-parametric, we mean a technique, such 
as the sign test, that is not based on a specific distributional assumption. By robust, 
we mean a statistical technique that performs well under a wide range of 
distributional assumptions. However, techniques based on specific distributional 
assumptions are in general more powerful than these non-parametric and robust 
techniques. By power, we mean the ability to detect a difference when that 
difference actually exists. Therefore, if the distributional assumption can be 
confirmed, the parametric techniques are generally preferred.  
 
If you are using a technique that makes a normality (or some other type of 
distributional) assumption, it is important to confirm that this assumption is in fact 
justified. If it is, the more powerful parametric techniques can be used. If the 
distributional assumption is not justified, a non-parametric or robust technique may 
be required.  
 
The Kruskal-Wallis H test is a nonparametric test for deciding whether two 
samples come from the same population. A generalization for this for k samples is 
provided by the Kruskal-Wallis H test, or briefly the H test. 
This test may be described as: Suppose that we have k samples of sizes 

1 2 3, , ,....., kN N N N , with the total size of all samples taken together being given by 

1 2 3 ..... kN N N N N= + + + + . Suppose that further that the data from all the samples 
taken together are ranked and that the sums of the ranks for the k samples are 

1 2 3, , ,....., kR R R R , respectively. If we define the statistic (equation (62)): 
 

( ) ( )
2

1

12
3 1

1

k
j

j j

R
H N

N N N=

= − +
+ ∑            -------------------(62) 

 
Then it can be shown that the sampling distribution of H is very nearly a chi-
distribution with (k-1) degrees of freedom, provided that 1 2 3, , ,....., kN N N N  are all at 
least 5. The H test provides a nonparametric method in the analysis of variance for 
one-way classification, or one-factor experiments, and generalizations can be 
made. 
 
In the case that there are too many ties among the observations in the sample 
data, the value of H given by the equation (62) is smaller than it should be. The 
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corrected value of H, denoted by CH  is obtained by dividing the value given in 
equation (62) by the correction factor given in equation (63): 
 

3

31
T T

N N

−
−

−
∑           ------------------(63) 

 
where T is the number of ties corresponding to each observation and where the 
sum is taken over all the observations. If there are no ties, then T=0 and the 
correction factor reduces to 1, so that no correction is needed. In practice, the 
correction is usually negligible (. i.e., it is not enough to warrant a change in the 
decision). 
 
Assumptions and interpretation: It is assumed that the variable under 
consideration is continuous and that it was measured on at least an ordinal (rank 
order) scale. The test assesses the hypothesis that the different samples in the 
comparison were drawn from the same distribution or from distributions with the 
same median. Thus, the interpretation of the Kruskal-Wallis test is basically 
identical to that of the parametric one-way ANOVA, except that it is based on 
ranks rather than means 
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6.5.8 Results of non-parametric  test 
 
Table 28: H test results for 240 and 300um samples 

Between H statistics 
Degree of 
freedom 

Chi-Square 95 
percentile value Decision Conclusion 

240um and 300um 
pure bending 0.55 1 3.84 

Do not reject 
H0 

No 
difference 
between 
samples 

240um and 300um 
combined loading 34.52 1 3.84 Reject H0 

Significant 
difference 
between 
samples 

Pure bending 
(240um, 300um), 
240um combined 

loading and 300um 
combined loading 

58.20 2 5.99 Reject H0 

Significant 
difference 
between 
samples 

 
Additional notes: 
Null hypothesis, Ho: No significant difference in fracture stresses between the 
samples 
Alternative hypothesis, H1: Significant difference in fracture stresses between the 
samples 
Level of significance: 5% 
 
Conclusion: There is statistical evidence to show that the fractured stresses 
of the samples are indeed different from each other. 
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6.6 Explanations for differences in strength  
 
6.6.1 Overview 
 
The load factor analysis is used to explain the differences in fractured stresses 
between the samples. The load factor PDF is an intrinsic characteristic for a 
specific geometry and loading configuration. The differences in fracture stresses 
were postulated to be the due to the differences in the apparent flaw distributions. 
In this research, it is assumed that a specific flaw population (flaw size, flaw 
orientation, density) exists in each location in the beam and this specific flaw 
population is assumed constant through the wafer. To be more specific, the flaw 
distribution (size, orientation, density) may vary depending on the location on each 
beam. However, there is no difference in flaw distribution between any two 
specimens at the same location of the beam.  
 
Firstly, selection of a path suitable for stress and load factor analysis is discussed. 
Then, explanations for the differences in fractured stresses between the samples 
were offered, and the inferences on the nature of the flaw population were made, 
supported by SEM photos of flaws at various locations on the beams. 
 
 
6.6.2 Selection of a suitable path 
 

 
Fig 63: Extent of flaw across the beam height 
 
There is fractographic evidence to show that the flaw at most covers about 25% of 
the beam sidewalls . (Refer to Fig 63) The rationale for using a line path instead of 
an area path for stress and load factor analysis is that crack initiation sites occur 
exclusively at the edge of the beam. Although higher principal stresses may occur 
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towards the middle section of the beam, there is no fractographic evidence that 
shows crack initiating at the middle section of the beam. Moreover, flaws become 
progressively larger as one approaches the edge of the beam. Furthermore, from 
a fracture mechanics point of view, a flaw on the surface of the beam will have a 
greater stress intensity factor than a flaw in middle of the beam and thus will be 
more susceptible to fracture. In using the line path, one will implicitly assume that 
cracks on the line path are independent and hence do not interact with each other. 
The validity of such an assumption is questioned since overlaps of flaw could be 
observed in SEM photos. 
 
The reason for the formation of such flaws is given as: 
When reaching the insulator interface, charging of the dielectric surface leads to 
ion deflection that causes breakdown of the passivation at the base of the trench. 
The result of this breakdown is lateral etching known as notching, or “footing”, 
and this is undesirable  for many applications. 
 
 

 
Fig 64: Explanation of interactions between flaws 
 
Assume that a line path is chosen. Here, the validity of such a line path is 
discussed. 
 
For instance, (refer to Fig 64) consider three flaws, namely flaw A, B and C. Flaw 
A and B are surface flaws while flaw C is an interior flaw. Suppose, a stress 
distribution acts on the beam and since surface flaws have a much higher 
probability of initiation, it is logical to assume that one of the surface flaws will be 
the site for crack initiation. Furthermore, suppose that there are interactions 
between flaw A and B.  
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• Case1: assume that flaw A is the crack initiation site: since flaw A lies on 
the line path, the use of the line path is valid. 

• Case 2: assume that flaw B is the crack initiation site (this is possible since 
flaw B is very near the edge of the beam: If flaw B were to crack initially, the 
stress around flaw B will be intensified and consequently, stress around 
flaw A will also be intensified. Hence, if flaw B were to interact with flaw A, 
flaw A will almost instantaneously crack after flaw B crack since the two 
cracks are in close proximity with each other. Since the two flaws are close 
to each other, the nominal stress estimated along line path can still be used 
for analysis. 

• Case 3: assume that flaw C is the crack initiation site (the possibility of 
failure from in interior flaw is very low). The nominal stress at the interior of 
the beam should be higher than at the edge of the beam. Since the extent 
of the flaw is about 20% of beam sidewalls, the difference in nominal stress 
between the two locations (surface and interior) will not be too large. Thus, 
the stress estimated by the line path will be lower than the actual stress, 
which is safe from the point of view of design. 

 
In conclusion, the use of the line path for this specific type of flaw 
population should be valid. 
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6.6.3 Illustrations of path A and path B 
  

 
Fig 65: Representation of path A and B in the beam and fillet region F1 and F2 on 
the beam. (Start: start of path; end: end of path)   
[Shorter Path B used for pure bending and pure torsion] 
 

 
Fig 66: Longer Path B used for combined loading  



 96

For pure bending and pure torsion, the principal stress distribution at the path A 
and path B of the beams are the similar. Hence, only path A results will be shown. 
 
In the case of combined loading, stress distribution at path A and B are dissimilar 
and results for both path A and path B will be shown. 
 
Moreover, for the case of pure bending and pure torsion, path B shown in Fig 65 is 
sufficient. On the other hand, for the case of combined loading, because of the 
nature of combined loading, the stress distribution on path B is very board and a 
much longer path B (shown in Fig 66) was required. 
 
 
6.6.4 Typical load factor values for path A and path B 
 
Table 29: Typical load factor values  

Load factor 
 

Path A Path B 

240 pure 
bending 0.0687 0.0687 

300 pure 
bending 

0.0637 0.0637 

240 
combined 

0.0748 0.319 

300 
combined 0.0703 0.266 

 
Table 30: No of times a sample appears to be stronger when compared to 
samples stressed by a uniform tensile stress (note that lower values will mean 
relative lower strength) 

Comparison with 
uniform tensile 

stress  

Path A Path B 

240 pure 
bending 1.41 1.41 

300 pure 
bending 

1.43 1.43 

240 
combined 

1.63 1.24 

300 
combined 1.70 1.30 
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1

1 im
i

tension iLf
σ

σ
 

=  
         ---------------------(64) 

 
whereby tensionσ  is the mean stress for uniform tension, and iLf  the load factor, im  
the Weibull modulus and iσ  the mean stress for case i. The formula shown in 
equation (64) is used to calculate Table (30) shown above. 
 
 
Table 31: mean and SD values for fractured stresses 

  
Pure 

bending 
Combined 

240um 
Combined 

300um 
Mean 
[MPa] 736.33  476.18  280.89  

SD 
[MPa] 112.27  103.77  64.58  

COV 0.15  0.22  0.23  
 
 
Typical load factor values are shown above in Table 29 and the number of times a 
sample appears to be stronger when compared to similar samples stressed by 
uniform tensile stress are given in Table 30. 
 
As can be observed from Table 29 and Table 30, differences in the load factor 
alone cannot account for the large difference in strength between pure bending 
and combined loading samples.  
 
It should be noted that since the principal stress direction for the case of pure 
bending is not the same as that for combined loadings, the load factor value 
couldn’t be compared directly. However, one can infer that any difference in 
strength not explained by the load factor could be attributed to the 
differences in maximum principal stress direction between the pure bending 
and combined loading. 
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6.6.5 Typical stress distribution plots 
 
Pure bending path and stress contrast plots: 
 

 
Fig 67: A typical maximum principal stress (nodal-stress) plot along path A or 
path B 
 

 
Fig 68: A typical stress X (nodal-stress) plot along path A or path B 
 
It can be observed that the maximum value for both the maximum principal stress 
and stress X is almost the same. It is because the maximum principal stress 
direction is almost the same as that for stress X, i.e., that is along the beam-length 
direction. 
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Fig 69: A typical maximum principal stress contrast plot for pure bending  
 

 
Fig 70: A typical stress X contrast plot for pure bending 
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Combined loading path plots: 
 

 
Fig 71: A typical maximum principal stress (nodal-stress) plot along path A  
 

 
Fig 72: A typical stress X (nodal-stress) plot along path A  
 
It can be observed that the maximum value for both the maximum principal stress 
and stress X is quite different. It is because the maximum principal stress direction 
is different from that of stress X. 
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Fig 73: A typical stress Y (nodal-stress) plot along path A  
 

 
Fig 74: A typical stress XY (nodal-stress) plot along path A  
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Fig 75: A typical maximum principal stress (nodal-stress) plot along path B 
 

 
Fig 76: A typical stress X (nodal-stress) plot along path B 
 
It can be observed that the maximum principal stress distribution along path B 
(refer to Fig 75) stretches almost to the end of path B. This can be attributed to 
stress Y component (refer to Fig 77), which also stretches almost to the end of 
path B. The existence of this stress Y component is due to the nature of combined 
loading. In the case of pure bending or pure torsion, such a long-stretching stress 
Y component does not exist.  
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Fig 77: A typical stress Y (nodal-stress) plot along path B 
 

 
Fig 78: A typical stress XY (nodal-stress) plot along path B 
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6.6.6 Difference between 240um and 300um pure bending 
 
Stress and load factor PDF distribution for path A or B: 
 

 
Fig 79: A typical principal stress distribution for pure bending (path A or B) 
 
 

 
Fig 80: A typical load factor PDF for pure bending (path A or B) 
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Discussion and explanation: 
 

• There is no statistical difference in strength between 240um and 300um 
pure bending samples. The 240um and 300um samples have almost similar 
strength in pure bending. 

 
• Path A or B: From the principal stress distribution and load factor PDF, one 

can see that there is no noticeable difference.  
 
• Inferences: the flaw populations in 240um and 300um in the “severe stress 

region” are of the same nature (same size and orientation PDF). In other 
words, on a single piece of wafer, the flaw population in the “severe stress 
region” on any two specimens could be almost the same.  

 
• SEM photos: There seems to be no fractographic evidence to show that 

there is a difference in flaw between the 240um and 300um samples. 
Furthermore, it is postulated that the geometrical difference between 
240um and 300um specimen could not possibly lead to a significant 
difference in etching defects (size and orientation). Refer to Fig 100 to 
Fig 117 for a comparison of flaws between 240um and 300um specimens. 
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6.6.7 Difference between pure bending and combined loading 
 
Stress and load factor PDF distribution for path A: 
 

 
Fig 81: A typical stress distribution for 240um pure bending and 240um 
combined loading (path A) 
 
 
 

 
Fig 82: A typical load factor PDF for 240um pure bending and 240um combined 
loading (path A) 
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Stress and load factor PDF distribution for path B: 
 

 
Fig 83: A typical stress distribution for 240um pure bending and 240um 
combined loading (whole of path B) 
 
 
 

 
Fig 84: A typical stress distribution for 240um pure bending and 240um 
combined loading (part of path B) 
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Fig 85: A typical load factor PDF for 240um pure bending and 240um combined 
loading (whole of path B) 
 
 

 
Fig 86: A typical load factor PDF for 240um pure bending and 240um combined 
loading (part of path B) 
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Discussion and explanation: 
 
• There is significant statistical difference in strength between pure 

bending and combined loading samples (non-parametric test). 
 
• Path A: From the load factor PDF graph, one can see that the peak of the 

load factor for the case of 240um combined loading is a little closer to the 
left side of the graph. The load factor values for both pure bending and 
combined loading are almost similar. 

 
• Path B: From the load factor PDF, one can observe that for the case of 

pure loading, the load factor PDF is concentrated on the left side of the 
graph while that for the combined loading is concentrated on the right side. 
This is due to the nature of combined loading, which results in stress 
distribution on diagonally opposite edges of the beams. The load factor 
value for the combined loading in this case is significant greater than that 
for pure bending.  

 
• Inferences: The difference in strength could be attributed to the fact that for 

the case of 240 combined loading, the maximum principal stress direction is 
more aligned with the general flaw orientation. Another possible reason for 
the difference in strength could be attributed to the fact that the combined 
loading has a much higher overall load factor (considered both path location 
A and B) than pure bending. As a result, the fracture probability is increased. 

 
• SEM photos: It can be observed that the flaws are almost of the same 

nature in the left or right fillet. Moreover, the flaws are aligned 
perpendicularly to the beam edge in the fillet region. Refer to Fig 102 to Fig 
107 or Fig 110 to Fig 115 for flaws around the fillet region. 
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6.6.8 Difference between 240um and 300um combined loading 
 
Stress and load factor PDF distribution for path A: 
 

 
Fig 87: A typical stress distribution for 240um and 300um combined loading 
(path A) 
 

 
Fig 88: A typical load factor PDF for 240um and 300um combined loading (path 
A) 
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Stress and load factor PDF distribution for path B: 
 

 
Fig 89: A typical stress distribution for 240um and 300um combined loading 
(whole of path B) 
 
 

 
Fig 90: A typical stress distribution for 240um and 300um combined loading 
(part of path B) 
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Fig 91: A typical load factor PDF for 240um and 300um combined loading (whole 
of path B) 
 
 

 
Fig 92: A typical load factor PDF for 240um and 300um combined loading (part 
of path B) 
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Discussion and explanation: 
 
• There is significant statistical difference in strength between the 240um 

and 300um combined loading samples (non-parametric test).  
 

• Path A: From the stress and load factor PDF graphs, one can observe that 
there are no noticeable differences. Moreover, the load factor value for both 
240um and 300um combined loading are similar, with 240um being only 
slight higher.  

 
• Path B: From the stress and load factor PDF graphs, one can observe that 

there are noticeable differences. Moreover, the load factor value for both 
240um is much higher than that for 300um. 

 
• Inferences: Despite the fact that the overall load factor for the 240um 

sample is larger than that for the 300um sample, the 300um sample failed 
at a lower fracture stress. This could be explained by the fact that the 
geometrical difference between the 240um and 300um sample has resulted 
in the 300um sample’s maximum principal stress direction being more 
favorably orientated in the general flaw direction. This in turn could imply 
that flaw orientation is very important in determining the strength of 
the specimen.  

 
• SEM photos: Refer to Fig 102 to Fig 107 or Fig 110 to Fig 115 for flaws 

around the fillet region. 
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6.7 Fractography 
 
6.7.1 Scaling issues in fractography 
 
It is a universal feature of fractography that there is detail at all magnifications, 
down to the atomic level. This raises the question as to the magnification at which 
the surface is to be examined. The answer depends on many different factors and 
in particular, on the purposes of the examination and the type of information 
required. A key issue is the scale of observation in relation to the scale of the 
microstructure. Fractographic observations are made over a very wide range, from 

1010 m− to 1m  and beyond. The individual techniques have a limited range of 
applicability and there may be problems in reconciling features observed with 
different techniques at the same magnification. The microstructural dimension is a 
characteristic of the material. In many materials, there are several levels of 
structural organization and a hierarchy of microstructural dimensions. The 
dimension relevant to a particular fractographic dimension depends on the nature 
of the problem being studied.  
 
The roughness of fracture surfaces, apparent at all scales of observation, makes it 
particularly difficult to describe the topography of these surfaces either qualitatively 
or in mathematical terms. The problem is common to many phenomena, 
particularly in the complex patterns of nature. These patterns appear random and 
chaotic and yet they exhibit some evidence of internal consistency. Here, “fractal” 
can be used to describe these irregular and fragmented features. The application 
of the fractal approach has been possible because of the development of powerful 
image analysis equipment and computer software. Although there are many 
limitations to the use of fractal geometry in fractography, the underlying concepts 
provide a valuable tool for understanding some aspects of the subject. Attempts 
have been made to correlate the fractal parameters of fracture phenomena with 
the engineering performance of materials. In fractal geometry, the relation 
between ( )L r (length of measurement) and r (unit length of measurement) is a 
measure of the roughness. It should be noted that there is a strong statistical 
factor in the determination of ( )L r . The fractal dimension is obtained by plotting 
log ( )L r  against log r . If the plot is linear, the relationship between ( )L r  and r  may 
be written as: 
 

( 1)( ) DL r Ar − −=          ------------------(65) 
 
where A is a constant and the slope of log ( )L r  versus log r  is (1-D). D is the 
fractal dimension. It has a value between one and two. If log ( )L r  versus log r  is 
linear, the following properties of the roughness apply: 
 

• The roughness profile exhibits self-similarity. This means that, on a 
statistical basis, the profile appears the same at all magnifications. With 
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self-similarity established, one has a powerful tool to describe the length of 
the profile at any magnification. 

• The degree of roughness increases as D increases. D=1 for a straight line 
profile. 

• For a fully fractal profile, the length of the line extends without limit. As r 
approaches zero, ( )L r  approaches infinity. It follows that the length of the 
profile is infinite. Clearly, this does not apply to real fracture surfaces. There 
is an upper limit set to r by the overall dimensions of the fracture surface 
and there is a lower limit set by atomic dimensions. 

 
There are many aspects of scaling concerned with the dimensions of 
microstructure in relation to features of the stress fields in a material or 
component before it fails. The important factor here is not the absolute 
dimensions of the specimen or the microstructure but their relative values. In 
other words, the deformation and fracture behaviors of the solid depend on the 
relative values of dimensions and not absolute  values. In materials with a 
hierarchy of microstructural dimensions, there are some dimensions that are 
sensitive to the dimensions of the stress field and others that are not. 
 
 

In this research, the entire fractured surface was first examined at a high 
magnification (approximately 300 to 400 times). Characteristics of brittle 
fractured surfaces were confirmed. Next, magnification was increased to 
about 5000 to 10,000 times to locate the flaws. At a magnification of about 
10,000 times, each individual major flaw could be observed and thus the 
approximate general size and orientation of the flaw could be determined. 
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6.7.2 Typical size of flaw and estimation of nominal fracture stress 
 

 
Fig 93: A typical flaw in the region of 1um in the beam 
 
Using linear-elastic fracture mechanics (LEFM), the severity of a crack in a 
component can be characterized by the value of a special variable called the 
stress intensity factor shown below in equation (66): 
 

K FS aπ=          -------------(66) 
 
where S is nominal global stress and a is crack length, both consistently defined 
relative to the dimensionless quantity F. Use of K depends on the behavior being 
dominated by linear-elastic deformation, so that the zone of yielding (plasticity) at 
the crack tip must be relatively small. Simple equations and handbooks provide 
values of F for a wide range of cases of cracked bodies. The value of F depends 
on the crack and member geometry, the loading configuration, such as tension or 
torsion, and on the ratio of the crack to the width of the member. Some notable 
values of F for relatively short cracks under tension stress are as follows (equation 
(67): 
 

1.00 ( -  )
1.12 ( -   )
0.73 ( -   )

F center cracked plate
F through thickness surface crack
F half circular surface crack

=
=
=

         ------------------(67) 

 
The value of K where a given material begins to crack significantly is called QK , 

and where it fails CK . Slow-stable crack growth may follow QK  until CK   is 
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reached, and both of these may decrease with increased member thickness. If the 
plastic zone surrounding the crack tip is quite small compared to the thickness and 
is very well isolated relative to the boundaries of the member, then a state of plain 
strain is established. Under plane strain, only limited slow-stable crack growth 
occurs, so that QK  and CK  have similar values to each other and also to the 

standard plane strain fracture toughness, ICK . A value of ICK  thus represents a 
worst-case fracture toughness that can be safely used for any thickness.  
 
Values of ICK  for a given material generally decrease along with ductility if the 
material if the material is processed to achieve higher strength. For a given 
material and processing, ICK  generally increases with temperatures, sometimes 
exhibiting a rather abrupt change over a narrow range of temperatures, and also 
having relatively constant lower shelf and upper shelf values on opposite sides of 
the temperature transition. Increased loading rate causes ICK  to decrease, having 
the effect of shifting the transition to higher temperature. The microstructure of the 
material may affect ICK , as in the detrimental effect of sulfur in some steels, the 
effect of crystal grain orientation from rolling of aluminum alloys, and radiation 
embrittlement of pressure vessel steels. 
 
If the plastic zone is too large, LEFM is no longer valid. Modest amounts of 
yielding can be handles by using adjusted values of ICK  calculated by adding half 
of the plastic zone size to the crack length. However, above about 80% of the fully 
plastic load or moment, more general methods such as the J-integral or the crack-
tip opening displacement (CTOD) are needed. 
 
 
In this research, the application of LEFM was assumed valid. ICK  of silicon 

approximated as 1 /21 MPam 11. F is taken to be 1 and a to be 1 um (typical size 
of a flaw). This gives a nominal stress of about 560 MPa. This is in good 
agreement (same order) with the fractured stress estimated from FEM 
analysis. 
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6.7.3 Pure bending fractured surface 
 

 
Fig 94: A typical fractured surface for pure bending (note the crack initiation site, 
mirror, hackle regions; the arrow head points in the direction of crack propagation) 
 
The fractography of “mirror”, “mist” and “hackle” provides a powerful tool in the 
study of a number of important fracture problems even though the associated 
phenomena raise some fundamental, and still to be understood, aspects of 
fracture dynamics. These features can be explained in a qualitative way. When a 
flaw or crack is present, there is stress concentration close to the crack tip. At a 
critical applied stress, the Griffith condition is satisfied and the crack starts to 
propagate. Under constant loading conditions, an increase in crack length means 
that fracture is unstable and excess energy is available  to drive the crack. In terms 
of fracture toughness parameters, once ICK K= , further crack growth results in K  
becoming much larger than ICK . Under these conditions, the crack accelerates 
very rapidly; the rate of energy release also increases rapidly, as does the stress 
intensity at the tip of the moving crack, usually referred to as the dynamic stress 
intensity dK . The higher stresses and greater energy released produce greater 
micro-mechanical activity at the crack tip and a progressive increase in the 
roughest of the fracture surface, which has the features of mirror, mist and hackle. 
  
Hence, from the examination of mirror, mist and hackle configurations, one 
can make a good inference about the crack propagation direction, which in 
this case is from left to right in the Fig 94. 
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6.7.4 Combined loading fractured surface 
 

 
Fig 95: A typical fractured surface for combined loading (note the undulating 
surfaces and river patterns) 
 
 

 
Fig 96: Evident river patterns (the arrow head points in the direction of crack 
propagation) 
  
The loading mode has a strong influence on the micro-deformation and fracture 

processes at the crack tip. In the case of pure bending, both the loading mode and 
crack propagation are predominately Mode I. In the case of combined loading, the 
loading mode is a combination of Mode I, Mode II and Mode III, judging from the 
configuration of the etching defects. The relationship between Mode II and Mode 
III loading and crack growth is more complicated. As these loading conditions do 
not generate any crack opening, it is difficult to envisage crack growth in brittle 
materials without some Mode I loading. Although the actual growth of cracks in 
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brittle materials in pure Mode II and pure Mode III loading is open to conjecture, it 
is absolutely clear that the combination of these loading modes, with Mode I 
loading, influences crack propagation.  
 

 
Fig 97: Crack tilting: Mixed Mode I/ II. 
 
Crack Tilting (Fig 97): The simplest case of mixed-mode loading is the 

combination of Mode I and Mode II. Under these conditions, the maximum tensile 
stress acts at an angle θ between 08 and 908 to the plane of crack. The growing 
crack tends to tilt about the line of crack front so that the plane of the crack is 
normal to the maximum tensile stress.  
 

 
Fig 98: Crack tilting: Mixed Mode I/III 
 
Crack twisting (Fig 98): In mixed Mode I/III loading, the maximum tensile stress 

acts at an angle φ between 0° and 90°. The crack tends to twist.  
 
An important point here is that the straight-fronted crack in Fig 97 can move to 

the new tilted surface simultaneously along the whole of the crack front. In contrast, 
it is impossible for the crack in Fig 98 to move to the new surface with producing a 
step on the surface. In other words, a smooth continuously expanding crack can 
tilt but it cannot twist. Hence, a smooth curving crack surface could be the result of 
Mode I/II loading and a stepped surface could be the result of Mode I/III loading. 
Furthermore, the occurrence of river patterns is often as a diagnostic tool to 
identify the presence of Mode I/III conditions  during crack growth.  
 

In this research, for the fractured surfaces of combined loading, there was 
fractographic evidence (river patterns) pointing to the existence of mixed 
mode I/III crack propagation. Also, since the fractured surfaces also showed 
undulating patterns, there could be mixed mode I/II crack propagation.  
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6.7.5 Flaws in the various regions of the beam 
 

 
Fig 99: Flaws in the various locations of the beam, namely A, B, C, D, E, F, G, H, 

I 
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Fig 100: 240um location A 
 

 
Fig 101: 300um location A 
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Fig 102: 240um location B 
 

 
Fig 103: 300um location B 
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Fig 104: 240um location C 
 

 
Fig 105: 300um location C
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Fig 106: 240um location D 
 

 
Fig 107: 300um location D 
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Fig 108: 240um location E 
 

 
Fig 109: 300um location E 
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Fig 110: 240um location F 
 

 
Fig 111: 300um location F 
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Fig 112: 240um location G 
 

 
Fig 113: 300um location G 
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Fig 114: 240um location H 
 

 
Fig 115: 300um location H 
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Fig 116: 240um location I 
 

 
Fig 117: 300um location I 
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7 Extrapolation to pure torsion and proposed fracture criterion 

7.1 Extrapolation to pure torsion 

7.1.1 FEM model overview 
 
A FEM model simulating pure torsion loading was constructed. The force applied 
to the specimen was given in the form of couple. A couple is a system of forces 
whereby forces of equal magnitudes act in opposite directions. The center of the 
couple was set to match point A on the specimen as shown in Fig 119 shown 
below. Fig 120 below shows a typical principal stress distribution. As can be 
observed, there is a symmetrical stress distribution on opposite sides, a and b of 
the beam. As such, load factor for path A and path B will be the same. A typical 
displacement distribution for pure torsion is shown below in Fig 121. Note that 
there should not be any displacement along the direction of the beam (line A). 
 

 
Fig 119: Couple applied to simulate pure torsion. A is the center of the couple. 
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Fig 120: A typical principal stress distribution for pure bending (note that the stress 
distribution is symmetrical on opposite sides, namely a and b) 
 

 
Fig 121: A typical displacement distribution for pure bending (note that 
displacement along line A should be zero) 
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7.1.2 Stress and load factor PDF for path A 
 

 
Fig 122: A typical principal stress distribution for pure torsion and combined 
loading (path A) 
 
 

 
Fig 123: A typical load factor PDF for pure torsion and combined loading (path A) 
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7.1.3 Stress and load factor PDF for path B 
 

 
Fig 124: A typical principal stress distribution for pure torsion and combined 
loading (whole of path B) 
 
 

 
Fig 125: A typical principal stress distribution for pure torsion and combined 
loading (part of path B) 
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Fig 126: A typical load factor PDF for pure torsion and combined loading (whole 
of path B) 
 
 

 
Fig 127: A typical load factor PDF for pure torsion and combined loading (part of 
path B) 
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7.1.4 Discussion and explanation 
 

• Path A: From the stress and load factor PDF, there seems to be no 
noticeable difference. The load factor for 240um pure torsion is 0.0760 
while that for 240um combined loading is 0.0748. The load factor for 300um 
pure torsion is 0.0704 while that for 300um combined loading is 0.0703. 

 
• Path B: From the load PDF, one can infer that the load factor for combined 

loading is larger than that for pure torsion due to the existence of two 
significant peaks in the load factor graphs. Moreover, the load factor PDF 
for the combined loading is very much broader. The load factor for 240um 
pure torsion is 0.0760 while that for 240um combined loading is 0.319. The 
load factor for 300um pure torsion is 0.0704 while that for 300um combined 
loading is 0.266. 

 
• Inferences: The overall load factor for combined loading is much larger 

than that for pure torsion. As such, a fracture criterion appropriate for 
combined loading should also be suitable for pure torsion. Nevertheless, 
the ability to perform better combined loading to mimic the pure torsion 
loading will result in less severe load factor for combined loading. In other 
words, the load factor for better combined loading test will be closer to that 
for pure torsion. Hence, from the industrial point of view, developmental 
cost can be saved.  

 
• SEM photos: It can be observed that the flaws in the different regions of 

the fillet are similar in nature (size, orientation). Refer to Fig 102 to Fig 107 
or Fig 110 to Fig 115 for the flaws around the fillet regions. 
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7.2 Proposed fracture criterion 

7.2.1 No specific well-defined values 
 
Fracture criterion to be proposed will not be some specific well-defined values. 
Instead, the fracture criterion will be in the form of a PDF (probability density 
function). This is because there are some uncertainties concerning the flaw 
population such as the size and orientation PDF throughout the beam length edge. 
Although three categories of flaws can be identified and their overall size and 
general orientation known, it is extremely difficult to characterize these flaws in 
term of flaw size or flaw orientation PDF. 
 
Postulation: For instance, in the non-fillet region, the flaws could have a broader 
flaw orientation PDF. In the fillet region, the flaw orientation could be narrower with 
a significant peak at around 0°.  
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Fig 128: Graph showing possible  flaw orientation PDFs for fillet and non-fillet 
regions (Note: horizontal axis shows the orientation of flaw in degree; the vertical 
axis shows the PDF values) 
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Fig 129: Graph showing a possible flaw size PDF (Note: the horizontal axis shows 
the flaw size in um; the vertical axis shows the pdf values) 
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7.2.2 Need for a separate fracture criterion for each form of geometry and 
loading 

 
Each form of geometry (240um or 300um) or mode of loading (pure bending or 
combined loading) results in a particular form of stress distribution on the flaw 
population existing on the edge length of the beam. This warrants a separate 
fracture criterion for each form of geometry and loading. Hence, three fracture 
criterions can be considered: namely, pure bending (240um and 300um), 
combined loading 240um and combined loading 300um. Hence, the fracture 
criterion will be PDF based on parameters estimated from experiment data.  
 
Table 32: MLM estimation of Weibull parameters 

  

Scale 
parameter 

[MPa] 
Weibull 

modulus 

Pure bending 783  7.77  

240um combined 517  5.28  

300um combined 306  4.98  
 
 

 
Fig 130: Proposed fracture criterion  
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8 Reliability analysis and safety design procedure 
 
8.1 Overview 
 
  SCS (single crystal silicon) is a brittle material. Its fracture strength, which is 
largely dependent on the surface damage caused by the etching process, varies 
according to the MEMS structure and size, etching conditions, temperature, 
humidity, location on the wafer and type of wafer. Thus, fracture strength 
distribution estimated by performing fracture tests cannot be used directly for 
design purposes. It is highly probable that such fracture strength estimated 
experimentally will not differ greatly from the actual fracture strength. Nevertheless, 
there is a need to estimate reliably the fracture strength distribution to be used for 
actual structural design purposes. On the other hand, when one  considers the 
production cost and time constraints, it is very likely that one will not have 
sufficient sample data to accurately estimate the fracture strength distribution 
(Weibull, etc.). Furthermore, in the case when a certain level of fracture strength is 
assured, the testing sample will not be stressed until the point of fracture. Instead, 
the testing sample will only be stressed to a certain level (below the actual fracture 
stress). Here, Bayesian reliability can be applied, in which past experimental data 
can be utilized as the prior PDF (probability density function). As such, only very 
few samples are required to effectively estimate the actual fracture strength PDF, 
which can be used for product structural evaluation (design, etc.). Moreover, 
censored data (unfractured data) can also be incorporated into Bayesian reliability 
analysis, which is thus more superior to the commonly used MLM (maximum 
likelihood method) in the absence of sufficient fractured data. In this research, a 
general safety design procedure (refer to section 8.2) based on Bayesian 
reliability analysis is proposed. 
 
  In the limiting case when there are an infinite number of samples, both the 
maximum likelihood method and Bayesian method will give the same estimate for 
the unknown parameters. In the first part of this chapter (section 8.3), 
reliability analysis results using both Bayesian (using non-informative prior) 
and MLM based on actual experimental data (240um combined loading) will 
be presented. In the case of finite samples, the two methods will give different 
estimates for the unknown parameters. The question arises as to which method is 
better. When there are very few samples, the Bayesian method is generally 
preferred. It is best that there is a prior knowledge of the PDF of the unknown 
parameters, which will result in better posterior PDF for the unknown parameters. 
Nevertheless, even if there is no expert opinion for the prior PDF, non-informative 
PDF for the unknown parameters can be used.  
 
  In the second half of this  chapter, a case study in the form of simulation 
(section 8.4) comparing the effectiveness of Bayesian method and MLM is 
given. Weibull parameters, namely scale parameter and Weibull modulus are 
updated using both Bayesian (non-informative priors and normal priors) and MLM 
(maximum likelihood method) and the results are compared for 2 cases: when 
sample size is 3 and when sample size is 10. It has been observed that in the 
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absence of sufficient data, if one overestimates the scale parameter by two times, 
one can still obtain a reasonable posterior strength PDF, which is close to the 
actual data. Moreover, it has also been shown that the non-informative prior 
outperformed the MLM. Thus, if one really does not have any prior knowledge of 
the data PDF, one can still use the non-informative prior and get reasonably good 
estimate for the posterior strength PDF. 
 
 
8.2 Safety design procedure 
 
  Here a safety design procedure is proposed. For demonstration purpose, it is 
assumed that n pieces of specimens have been tested, (i.e. fractured).  
 

1. Loading test is performed on each specimen and the fracture stress for 
each specimen is estimated by FEM analysis aided by fractography 

2. The Weibull parameters are then estimated based on the assumption that 
the fractured data follow a Weibull PDF. If n is small, Bayesian update 
method can be used. If there is no past data, non-informative priors can be 
used. If there are past data, normal prior PDFs for the Weibull parameters 
can be used. If n is large, other methods like MLM or moment method may 
be used. Hence, a fracture criterion (strength PDF) can be constructed 
based on the estimated Weibull parameters. Confidence intervals are also 
constructed for the Weibull parameters. 

3. Based on the estimated Weibull parameters, the design stress PDF and 
failure probability can be determined. Here, the relationship between the 
design stress and failure probability is established. 

4. The cost production function is then constructed and the required level of 
failure probability is set. 

5. Determine the design stress bound. (Only the lower limit will be used for 
design)  

6. Convert the design stress into displacement (angle of rotation) 
 
  Hence, a typical reliability specification will be 5.5°~6.0°  with a failure 
probability of 1% at sample size n. As the number of samples test is increased, 
the PDF for the Weibull parameters will become change such that the confidence 
interval width becomes narrower and the PDF becomes sharper. As a result, the 
design stress and hence the angle of rotation bound width will become smaller. 
   
  The next question will be how many samples to be tested. Here, a test 
termination criterion could be based on incremental or marginal 
improvement in value a parameter of concern, for instance the angle of rotation. 
In other words, if further improvement in the angle of rotation is found to be 
impractical or uneconomical, then the test should be terminated. 
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8.3 Results of reliability analysis based on actual experimental data 
 
  Bayesian parametric estimation is applied to actual experimental data (240 
combined loading). The data were all uncensored. Both the scale and Weibull 
modulus were the unknown parameters to be estimated. For the prior PDF, the 
non-informative prior (refer to Theory) concerning both the scale and Weibull 
modulus was used. The scale and Weibull parameters were updated starting with 
five samples in increasing order of five samples until 25 samples have been 
reached. Fig 132 below shows the updated scale PDFs and Fig 133 shows the 
updated Weibull modulus PDFs. It can be observed that the PDFs become 
narrower and have sharper peaks as the sample size increases. A typical PDF 
and CDF for Weibull modulus are shown in Fig 131. In this paper, the confidence 
interval values were extracted from the CDF, which was calculated by numerically 
integrating the PDF. Modal values are extracted from PDF. 
 
  Here, the 95% confidence intervals and modal values were extracted and the 
results were shown in Fig 134 and Fig 135. It can be observed that the width of 
95% confidence intervals becomes smaller as the sample sizes increases. 
Moreover, the PDFs become less skewed as the sample size increases. 
 

 
Fig 131: Extraction of confidence interval values from CDF (cumulative distribution 
function) 
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Fig 132: Updated scale parameter PDFs 

 
Fig 133: Updated Weibull modulus PDFs 
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Fig 134: 95% C.I values and modal values for Weibull modulus 
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Fig 135: 95% C.I values and modal values for scale parameter 
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Comparison with MLM: 
 
  The MLM and Bayesian method are equivalent in the asymptotic limit of infinite 
training data.  
 
  First, the computational complexity. In this case, the MLM is preferred since it 
requires merely differential calculus techniques rather than a possibly complex 
multidimensional integration needed in Bayesian method. 
 
  Next, the interpretation. The MLM seeks to find the parameter value that is best 
supported by the training data, i.e. maximizes the probability of obtaining the 
samples actual observed. In Bayesian estimation, the parameters are considered 
random variables having a known prior PDF; the training data convert this to a 
posterior PDF. The recursive Bayesian method updates the Bayesian parameter 
estimate incrementally, that is, as each training point is sampled. Thus, the 
Bayesian method is, in principle, to be preferred.  
 
  It had been shown previously (simulation) that the Weibull modulus (modal value) 
could be estimated more accurately when samples were limited. For the case of 
scale parameter (modal value), such a similar trend could not be observed. The 
results are shown in Table 33. 
 
Table 33: Comparison between Bayesian and MLM (%value) 

Scale parameter Weibull modulus No of 
data Bayesian MLM Bayesian MLM 

4 94.3 93.9 139.0 209.0 
6 97.1 98.0 125.0 158.0 
8 105.7 104.0 93.0 109.0 

10 102.9 104.0 105.0 119.0 
15 102.9 101.7 100.0 109.0 
20 100.0 99.4 86.0 91.5 
25 100.0 100.1 97.0 102.0 

 
  Now, it can be observed that when there are few samples, the Bayesian method 
gives narrower confidence intervals for the Weibull modulus (Fig 136 and Fig 137) 
but a wider confidence interval for the scale parameter (Fig 138 and Fig 139). 
When the sample sizes increases, the confidence interval widths for both Weibull 
modulus and scale parameter converge.  
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Fig 136: Comparison of Weibull modulus values between Bayesian method and 
MLM  
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Fig 137: Comparison of Weibull modulus C.I width between Bayesian method and 
MLM  
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138: Comparison of scale parameter values between Bayesian method and MLM  
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Fig 139: Comparison of scale parameter C.I width between Bayesian method and 
MLM 
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Relationship between the design stress and failure probability: 
 

 
Fig 140: A typical relationship between the failure probability and design stress 
(normal problem) 
  

 
Fig 141: A typical relationship between the design stress and failure probability 
(reverse problem)  
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Table 34: A typical set of standard error and 95% confidence interval for failure 
probability (240um) obtained using Monte Carlo  simulations 

Design stress 
[MPa] 

Failure 
probability [%] 

Standard 
error 

95% confidence 
interval 

100 0.01 0.003  0.004  0.016  

150 0.155 0.012  0.131  0.179  

175 0.367 0.019  0.330  0.404  

200 0.748 0.027  0.695  0.801  

225 1.359 0.037  1.287  1.431  

250 2.366 0.048  2.272  2.460  

300 6.196 0.076  6.047  6.345  

350 13.039 0.106  12.830  13.248  

 
Table 35: A typical set of standard error and 95% confidence interval for failure 
probability (300um) obtained using Monte Carlo  simulations 

Design stress 
[MPa] 

Failure 
probability [%] 

Standard 
error 

95% confidence 
interval 

50 0.017  0.004  0.009  0.025  

75 0.089  0.009  0.071  0.107  

100 0.432  0.021  0.391  0.473  

125 1.209  0.035  1.141  1.277  

150 3.123  0.055  3.015  3.231  

175 6.587  0.078  6.433  6.741  

200 12.087  0.103  11.885  12.289  

 
  From a safety design point of view, the failure probability is first specified. Next, 
the relationship between the design stress and failure is determined by a 
combination of Monte Carlo simulation and an iterative procedure. (This is a 
reverse problem). The relationship between failure probability and (mean) design 
stress is shown in the Fig 140 and Fig 141. Here, the Latin hypercube sampling for 
the random number generation is used. For this sampling technique, the random 
input variables are sampled randomly according to their distribution functions, 
efficiently stratifying the samples into layers and avoiding the re-use of those 
layers. The sampling process has a "memory" of previous simulations, which 
prevents accumulation of clusters of samples. In addition, this sampling strategy 
forces the extreme ends of a distribution function to participate in the sampling. 
This generally leads to smoother distribution functions of the sampled set. For 
each design stress, 100,000 runs are performed to obtained to failure probability. 
The confidence intervals (95%) for the failure probability are also constructed. The 
standard deviation of the design stress is assumed 10% of the mean design stress 
value. (Hence COV is assumed to be constant).  
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  Moreover, the failure probability can also be obtained by an analytical method 
by approximating the non-normal PDF with a normal PDF. Here the Taylor 
expansion is performed at the failure point, which occurs at the left skirt of the PDF 
(refer to Fig 142). As such, for small failure probability, such an analytical method 
will give a more accurate estimation. The formula used for approximation to 
normal PDF are given below in equation (68): 
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jXµ : Mean of normalized PDF 

jXσ : Standard deviation of normalized PDF 
*( )

jX jf x : Non-normal PDF for random variable jX  
*( )

jX jF x : Non-normal CDF for random variable jX  
*( )jxϕ : Standardized normal PDF 
*( )jxΦ : Standardized normal CDF 

*
jx : Failure point  

 
The unknown variables are 

jXµ  and 
jXσ for a particular failure point *

jx . Thus, the 

above equation (68) is solved iteratively. 
 

 
Fig 142: Normalization of non-normal PDF (before: PDF before normalization; 
after: PDF after normalization)  
 
  It can be observed from Fig 142 that at the left skirt, both PDFs (before and after) 
are almost equivalent. Note that the failure point is at 155.82 on the horizontal axis.  
At the failure point, both PDFs (before and after) have the same value. 
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Design stress bound: 
 
  (Assumption: for a constant failure probability) The lower and upper bounds for 
the design stress PDF were estimated as follows: the lower bound for design 
stress PDF can be determined by the combination of the lower confidence interval 
values of the scale and Weibull modulus. Similarly, the upper bound for design 
stress PDF can be determined by the combination of the higher confidence 
interval values of the scale and Weibull modulus. This explanation is shown in Fig 
143 below. The standard deviation of the design stress is assumed 10% of 
the mean design stress value. (Hence COV is assumed to be constant). In the 
normal course of analysis, failure probability is determined when the stress and 
strength PDF are given. Now, the failure probability is first set and the design 
stress PDF is to be determined. Thus, this is a reverse problem, which can be 
solved by an iterative procedure. The relationship between failure probability and 
design stress for a large number of cases is determined and then an interpolation 
equation to relate the two variables is constructed. Typical design stress bounds 
are shown in Fig 144 and Fig 145 below. Though the entire range of the design 
stress bound was shown, only the lower limit (left bound value) should be 
used in the design process. 
 
  Finally, the failure probability in this research is set at 1%. Hoverer, there will 
be uncertainty regarding the failure probability and its confidence intervals. As 
such, it is advisable to treat the failure probability of 1% as a relative value 
instead of as an absolute value. Moreover, in the usual structural design, a 
failure probability of 1% is too high. However, in the case of MEMS reliability 
analysis, there is the proof test (screening test) in which products below a certain 
level of fracture strength are screened and removed. The proof test stress is 
usually set at a level whereby a certain number of samples will be fractured and 
removed. As such, if the failure probability is set too low (proof test stress will be 
too high), most samples will be fractured and removed.  
 

Fig 143: Explanation for determining the design stress bound 
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Fig 144: Design stress bounds determined using Bayesian method  
Note: failure probability is set at (1±0.06)% 95% confidence interval] 
 

 
Fig 145: Design stress bounds determined using MLM  
[Note: failure probability is set at (1±0.06)% 95% confidence interval] 
 
Relationship between displacement (angle of rotation) and design stress: 
 
  Since in the normal flow of analysis, the displacement (ang le of rotation) is the 
input and the design stress is the output. Now, the reverse problem is to be 
solved: The design stress becomes the input and the displacement is the output.  
 

-1

 normal problem:     ( )

reverse problem:   (  )

design stress function displacement

displacement function design stress

=

=      -------------(69) 
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Fig 146: Graph of design stress versus angle of rotation for 240um pure torsion 
(normal problem) 
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Fig 147: Graph of angle of rotation versus stress for 240um pure torsion (reverse 
problem) 
 
  A typical relationship between design stress and angle of rotation is shown in Fig 
146 and Fig 147. As can be seen from the graphs, there is an almost perfect linear 
relationship between the design stress and the angle of rotation. For a more 
general case, probabilistic design is performed and surface response method can 
be used to determinate the relationship between the input parameters and output 
parameters. In this research, the input parameter was rotational angle and the 
output parameter was design stress at a particular location on the beam. For a 
more complex analysis, more input parameters, such as dimensions of beams, 
material constant, can be used. 
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Converting the design stress to rotational angle: 
 
  Probabilistic design was performed and surface response method was used to 
determinate the relationship between the input parameters and output parameters. 
In this research, the input parameter is rotational angle and the output parameter 
is design stress at a particular location on the beam. Since the design stress and 
rotational angle has an almost 100% linear relationship, a wider design stress 
bound will be translated into a wider rotational angle bound of the same proportion. 
For a more complex analysis, more input parameters, such as dimensions of 
beams, material constant, can be used. 
 

 
Fig 148: Rotational angle bounds determined using Bayesian method 
[Note: failure probability is set at (1±0.06)% 95% confidence interval] 
 

 
Fig 149: Rotational angle bounds determined using MLM 
[Note: failure probability is set at (1±0.06)% 95% confidence interval] 
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Conclusion: 
 
  The underlying fractured data was assumed to follow a Weibull PDF, and 
Bayesian update and MLM estimation for two parameters, namely the scale 
parameter and Weibull modulus have been performed. When there were few 
samples, the Bayesian method using the non-informative  prior could give a better 
estimate for Weibull modulus (modal value). Moreover, the confidence intervals for 
Weibull modulus were also narrower. On the other hand, for the case of scale 
parameter, such a trend could not be observed. The modal values estimated by 
both Bayesian method and MLM were almost the same. However, the Bayesian 
method gave much wider confidence intervals when the sample size was small. 
The design stress bounds determined by both the Weibull modulus and scale 
parameter were calculated and translated into rotational angle. For instance (refer 
to Fig 143 and Fig 144), at a failure probability of 1% and at a sample size of 25, 
both MLM and Bayesian method gave a rotational angle of about 5° (lower bound 
value). 
 
 
8.4 Case study (simulation) on effectiveness of Bayesian update  
 
  The MLM estimation of past data (240um combined loading) has given a scale 
parameter of 0.517 GPa and a Weibull modulus of 5.28. Data, which followed a 
Weibull distribution, were then generated randomly. Then, the effectiveness of the 
Bayesian method with respect to the MLM was compared for two cases: when 
sample size is three and when sample size is ten (mimicking data insufficiency). 
For the Bayesian method, two types of prior PDFs were used. One of them was 
the non-informative prior for the Weibull parameters and the other one was 
normal prior PDFs for the Weibull parameters. The mean values of the prior 
normal PDF for the different cases for the scale parameter and Weibull modulus, 
and updating results (geometrical distance C) are shown in Table 36 and Table 38 
for sample size of three and sample size of ten respectively.  (The standard 
deviation is taken to be 20% of the mean value for both scale parameter and 
Weibull modulus). 
 
  The geometrical distance C (refer to Fig 150 below) between the posterior PDF 
and the true underlying parameters was also calculated to give a measure of 
effectiveness of each method. Moreover, a corrective index (refer to equation 
(70) below) was introduced to indicate whether how much the posterior PDF was 
closer to the true underlying parameters with respect to the prior PDF. A larger 
and more positive  corrective index will indicate that the posterior PDF has become 
closer to the actual PDF after the Bayesian updating.  It is assumed that 100MPa 
is equivalent in distance to one unit of Weibull modulus, based on practical 
experiences. 
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Fig 150: illustration of the various distances (note that modal values for each PDF 
are used) 
 

distance Acorrective index =   1
distance C

−
    ---------------------------(70) 

 
Table 36: Comparison of Bayesian method (non-informative prior and normal 
prior) and MLM (average of 10 sets of data; each set of data contained 3 
samples) 

  

Shape 
(Weibull 
modulus) 

Scale 
[GPa] 

Bay. (Normal 
prior) 
Dist. C 

MLM 
Dist. C 

Bay. (non-
informative) 

Dist. C 
Corrective 

index 

Ranking of 
corrective 

index 
Case 1 5.280  1.034  0.582  3.745  2.660  7.876  1 

Case 2 7.920  1.034  2.416  3.745  2.660  1.403  2 
Case 3 2.640  1.034  3.334  3.745  2.660  0.741  4 
Case 4 7.920  0.517  2.361  3.745  2.660  0.118  6 

Case 5 2.640  0.517  2.464  3.745  2.660  0.072  8 
Case 6 5.280  0.259  1.883  3.745  2.660  0.373  5 
Case 7 7.920  0.259  2.032  3.745  2.660  0.818  3 

Case 8 2.640  0.259  3.377  3.745  2.660  0.094  7 

Case 9 5.280  0.517  0.506  3.745  2.660  NA NA 
        
        
  Best       
  Worst       
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Table 37: Standard deviations of distance C for the different cases under Bayesian 
(normal and non-informative priors) and MLM for a sample size of 3 

  

Bay. 
(Normal 

prior)           
Dist. C 

Standard 
deviation 

MLM Dist. 
C 

Standard 
deviation 

Bay (non-
informative) 

Dist. C 
Standard 
deviation 

Case 1 0.582  0.438  3.745  2.736  2.660  1.381  

Case 2 2.416  0.811  3.745  2.736  2.660  1.381  
Case 3 3.334  0.224  3.745  2.736  2.660  1.381  
Case 4 2.361  0.861  3.745  2.736  2.660  1.381  

Case 5 2.464  0.077  3.745  2.736  2.660  1.381  
Case 6 1.883  0.635  3.745  2.736  2.660  1.381  
Case 7 2.032  0.763  3.745  2.736  2.660  1.381  

Case 8 3.377  0.150  3.745  2.736  2.660  1.381  
Case 9 0.506  0.258  3.745  2.736  2.660  1.381  

 
  Firstly,  from Table 36, it can be observed that out of nine cases of normal prior 
PDFs, seven cases were more superior compared to MLM or Bayesian (non-
informative prior). Besides, out of these seven cases, case 1 had the highest 
corrective index, followed by case 2 and case 7. In other words, if twice the actual 
scale parameter was inputted as the mean for the normal prior PDF (the shape 
parameter is inputted correctly), the posterior PDF will become much closer to the 
actual PDF after the Bayesian updating. Moreover, it can be observed that 
Bayesian update using the non-informative prior was more effective the MLM. 
 
Table 38: Comparison of Bayesian method (non-informative prior and normal 
prior) and MLM (average of 10 sets of data; each set of data contained 10 
samples) 

 Shape Scale 

Bay (normal 
prior) 
Dist. C 

MLM   Dist. 
C 

Bay (non-
informative) 

Dist. C 
Corrective 

index 
Ranking of 

corrective index 

Case 1 5.280 1.034 0.677 2.020 1.870 6.638 1 

Case 2 7.920 1.034 1.658 2.020 1.870 2.502 2 

Case 3 2.640 1.034 2.145 2.020 1.870 1.706 3 

Case 4 7.920 0.517 1.587 2.020 1.870 0.663 6 

Case 5 2.640 0.517 2.129 2.020 1.870 0.240 8 

Case 6 5.280 0.259 1.237 2.020 1.870 1.090 5 

Case 7 7.920 0.259 1.669 2.020 1.870 1.214 4 

Case 8 2.640 0.259 2.783 2.020 1.870 0.328 7 

Case 9 5.280 0.517 0.668 2.020 1.870 NA NA 

        
 Best       
 Worst       
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Table 39: Standard deviations of distance C for the different cases under Bayesian 
(normal and non-informative priors) and MLM for a sample size of 10 

  

Bay. (Normal 
prior)           
Dist. C 

Standard 
deviation 

MLM 
 Dist. C 

Standard 
deviation 

Bay (non-
informative) 

Dist. C 
Standard 
deviation 

Case 1 0.677  0.241  2.020  1.506  1.870  1.274  

Case 2 1.658  1.239  2.020  1.506  1.870  1.274  
Case 3 2.145  0.154  2.020  1.506  1.870  1.274  
Case 4 1.587  1.251  2.020  1.506  1.870  1.274  

Case 5 2.129  0.161  2.020  1.506  1.870  1.274  
Case 6 1.237  0.669  2.020  1.506  1.870  1.274  
Case 7 1.669  0.585  2.020  1.506  1.870  1.274  

Case 8 2.783  0.212  2.020  1.506  1.870  1.274  
Case 9 0.668  0.234  2.020  1.506  1.870  1.274  

 
  Next, a sample size of 10 was used and the results are shown Table 38. As can 
be observed, results were generally similar to the case when the sample size was 
three were obtained. It can be observed that out of nine cases of normal prior 
PDFs, six cases were more superior compared to MLM or Bayesian (non-
informative prior). Besides, out of these six cases, case 1 had the highest 
corrective index, followed by case 2 and case 3. In other words, if twice the actual 
scale parameter was inputted as the mean for the normal prior PDF (the shape 
parameter is inputted correctly), the posterior PDF will become much closer to the 
actual PDF after the Bayesian updating. The same result was also obtained when 
the sample size was three.  
 
  Another point to note is that, for case two when both the scale parameter and 
Weibull modulus were overestimated, a high corrective index (ranking no. 2) was 
obtained. On the other hand, for case five when the Weibull modulus was 
underestimated (scale parameter correctly estimated), the corrective index 
became very low (in fact the lowest among all the cases). This implies that it is 
better to overestimate the scale or Weibull parameter (assuming the other 
parameter is known) rather than to underestimate them.  
 
  In general, for almost all cases, distance C has decreased. This is due to the 
greater corrective effect as the sample size increases. The effectiveness of 
using the non-informative prior as opposed to using MLM has decreased, as 
can be observed from the decreased difference in distance C value between 
Bayesian (non-informative) and MLM. 
 
  Hence, in the future, as the etching process improves, the scale parameter, 
which is an indication of the mean strength of the data, will also increase. 
Based on the results in Table 36, one can use just a few samples (preferably 
about 3 samples) to roughly predict the strength of the new samples 
produced by the new and improved etching process. If one really does not 
have a prior knowledge of the sample strength, one can still use the non-
informative prior. 
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  In this research, all the data was uncensored. However, in real applications, it is 
highly possible that some of the fractured data will be censored. This means that 
the samples are still unfractured at the end of their period of use. Hence, it is a 
need to develop a safety design procedure for such a need. Censored data can 
be accounted for by simply multiplying the maximum likelihood function with an 
additional term as shown in equation (71) below: 
 

{ }*

1 1

( | ) 1 ( | )
n m

i j
i j

g x G xθ θ
= =

× −∏ ∏    --------------------------(71) 

 

1

( | )
n

i
i

g x θ
=

∏ : Likelihood function 

 

{ }*

1

1 ( | )
m

j
j

G x θ
=

−∏ : Additional term to account for censored data 

 
( | )ig x θ : PDF for ix  given θ 

 
*( | )jG x θ : CDF for *

jx  given θ 
 

ix : Uncensored data from i=1 to i=m 
 

*
jx : Censored data j=1 to j=m 
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Raw results for Table 36 calculated above: 
 
 
Table 40: Set (1) calculation results when sample size =3 

Set 1 Shape Scale 

Bay (normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  1.619  8.687  5.055  

Case 2 7.920  1.034  3.375  8.687  5.055  

Case 3 2.640  1.034  3.776  8.687  5.055  

Case 4 7.920  0.517  3.183  8.687  5.055  

Case 5 2.640  0.517  2.449  8.687  5.055  

Case 6 5.280  0.259  2.954  8.687  5.055  

Case 7 7.920  0.259  3.401  8.687  5.055  

Case 8 2.640  0.259  3.618  8.687  5.055  

Case 9 5.280  0.517  0.921  8.687  5.055  

      
SET_1 Shape Scale Data   
Case 1 5.660  0.674  x1 0.644   
Case 2 8.366  0.654  x2 0.530   
Case 3 2.810  0.803  x3 0.671   
Case 4 8.301  0.617     
Case 5 2.881  0.566     
Case 6 2.621  0.388     
Case 7 2.230  0.367     
Case 8 2.043  0.355     
Case 9 5.658  0.601     
MLM 13.878  0.641     

Non-inform. 10.197  0.634     
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Table 41: Set (2) calculation results when sample size =3 

Set 2 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.304  2.525  0.769  

Case 2 7.920  1.034  2.651  2.525  0.769  

Case 3 2.640  1.034  3.254  2.525  0.769  

Case 4 7.920  0.517  2.632  2.525  0.769  

Case 5 2.640  0.517  2.405  2.525  0.769  

Case 6 5.280  0.259  1.452  2.525  0.769  

Case 7 7.920  0.259  1.229  2.525  0.769  

Case 8 2.640  0.259  3.292  2.525  0.769  

Case 9 5.280  0.517  0.328  2.525  0.769  

      
SET_2 Shape Scale Data   
Case 1 5.501  0.538  x1 0.559   
Case 2 7.931  0.523  x2 0.464   
Case 3 2.700  0.715  x3 0.393   
Case 4 7.909  0.504     
Case 5 2.881  0.499     
Case 6 4.464  0.397     
Case 7 6.125  0.428     
Case 8 2.506  0.340     
Case 9 5.549  0.498     
MLM 7.801  0.502     

Non-inform. 6.004  0.491     
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Table 42: Set (3) calculation results when sample size =3 

Set 3 Shape Scale 

Bay (normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.336  5.399  2.707  

Case 2 7.920  1.034  2.941  5.399  2.707  

Case 3 2.640  1.034  3.155  5.399  2.707  

Case 4 7.920  0.517  2.971  5.399  2.707  

Case 5 2.640  0.517  2.412  5.399  2.707  

Case 6 5.280  0.259  1.331  5.399  2.707  

Case 7 7.920  0.259  2.107  5.399  2.707  

Case 8 2.640  0.259  3.243  5.399  2.707  

Case 9 5.280  0.517  0.572  5.399  2.707  

      
SET_3 Shape Scale Data   
Case 1 5.587  0.503  x1 0.375   
Case 2 8.204  0.486  x2 0.468   
Case 3 2.687  0.697  x3 0.506   
Case 4 8.219  0.473     
Case 5 2.889  0.485     
Case 6 4.902  0.389     
Case 7 7.143  0.419     
Case 8 2.599  0.335     
Case 9 5.649  0.473     
MLM 10.661  0.473     

Non-inform. 7.938  0.466     
 



 161

Table 43: Set (4) calculation results when sample size =3 

Set 4 Shape Scale 

Bay (normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative)

Dist. C 

Case 1 5.280  1.034  0.509  6.849  4.266  

Case 2 7.920  1.034  3.077  6.849  4.266  

Case 3 2.640  1.034  3.296  6.849  4.266  

Case 4 7.920  0.517  3.082  6.849  4.266  

Case 5 2.640  0.517  2.371  6.849  4.266  

Case 6 5.280  0.259  1.272  6.849  4.266  

Case 7 7.920  0.259  1.669  6.849  4.266  

Case 8 2.640  0.259  3.285  6.849  4.266  

Case 9 5.280  0.517  0.449  6.849  4.266  

      
SET_4 Shape Scale Data   
Case 1 5.658  0.551  x1 0.475   
Case 2 8.354  0.531  x2 0.559   
Case 3 2.738  0.727  x3 0.464   
Case 4 8.362  0.514     
Case 5 2.910  0.510     
Case 6 4.605  0.409     
Case 7 6.787  0.445     
Case 8 2.476  0.346     
Case 9 5.723  0.510     
MLM 12.129  0.520     

Non-inform. 9.545  0.514     
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Table 44: Set (5) calculation results when sample size =3 

Set 5 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.996  2.637  3.608  

Case 2 7.920  1.034  0.921  2.637  3.608  

Case 3 2.640  1.034  3.632  2.637  3.608  

Case 4 7.920  0.517  0.720  2.637  3.608  

Case 5 2.640  0.517  2.635  2.637  3.608  

Case 6 5.280  0.259  2.870  2.637  3.608  

Case 7 7.920  0.259  3.034  2.637  3.608  

Case 8 2.640  0.259  3.629  2.637  3.608  

Case 9 5.280  0.517  0.653  2.637  3.608  

      
SET_5 Shape Scale Data   
Case 1 4.591  0.589  x1 0.176   
Case 2 6.038  0.569  x2 0.604   
Case 3 2.493  0.750  x3 0.514   
Case 4 5.991  0.528     
Case 5 2.648  0.503     
Case 6 2.895  0.357     
Case 7 2.740  0.351     
Case 8 2.190  0.327     
Case 9 4.627  0.518     
MLM 2.660  0.487     

Non-inform. 1.802  0.421     
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Table 45: Set (6) calculation results when sample size =3 

Set 6 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.564  1.692  2.696  

Case 2 7.920  1.034  1.354  1.692  2.696  

Case 3 2.640  1.034  3.393  1.692  2.696  

Case 4 7.920  0.517  1.210  1.692  2.696  

Case 5 2.640  0.517  2.538  1.692  2.696  

Case 6 5.280  0.259  2.327  1.692  2.696  

Case 7 7.920  0.259  2.112  1.692  2.696  

Case 8 2.640  0.259  3.464  1.692  2.696  

Case 9 5.280  0.517  0.382  1.692  2.696  

      
SET_6 Shape Scale Data   
Case 1 4.914  0.560  x1 0.60  
Case 2 6.596  0.549  x2 0.43  
Case 3 2.583  0.723  x3 0.27  
Case 4 6.490  0.518     
Case 5 2.753  0.494     
Case 6 3.474  0.370     
Case 7 3.695  0.377     
Case 8 2.368  0.329     
Case 9 4.917  0.505     
MLM 3.622  0.483     

Non-inform. 2.675  0.448     
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Table 46: Set (7) calculation results when sample size =3 

Set 7 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.231  3.453  1.186  

Case 2 7.920  1.034  2.751  3.453  1.186  

Case 3 2.640  1.034  3.193  3.453  1.186  

Case 4 7.920  0.517  2.773  3.453  1.186  

Case 5 2.640  0.517  2.422  3.453  1.186  

Case 6 5.280  0.259  1.397  3.453  1.186  

Case 7 7.920  0.259  1.721  3.453  1.186  

Case 8 2.640  0.259  3.272  3.453  1.186  

Case 9 5.280  0.517  0.465  3.453  1.186  

      
SET_7 Shape Scale Data   
Case 1 5.509  0.514  x1 0.36  
Case 2 8.023  0.497  x2 0.52  
Case 3 2.679  0.702  x3 0.48  
Case 4 8.031  0.483     
Case 5 2.875  0.488     
Case 6 4.695  0.390     
Case 7 6.705  0.421     
Case 8 2.561  0.335     
Case 9 5.567  0.480     
MLM 8.714  0.480     

Non-inform. 6.371  0.470     
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Table 47: Set (8) calculation results when sample size =3 

Set 8 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. c 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.623  5.223  3.001  

Case 2 7.920  1.034  3.032  5.223  3.001  

Case 3 2.640  1.034  3.048  5.223  3.001  

Case 4 7.920  0.517  3.062  5.223  3.001  

Case 5 2.640  0.517  2.445  5.223  3.001  

Case 6 5.280  0.259  1.444  5.223  3.001  

Case 7 7.920  0.259  2.543  5.223  3.001  

Case 8 2.640  0.259  3.216  5.223  3.001  

Case 9 5.280  0.517  0.832  5.223  3.001  

      
SET_8 Shape Scale Data   
Case 1 5.617  0.465  x1 0.48  
Case 2 8.235  0.449  x2 0.37  
Case 3 2.661  0.673  x3 0.40  
Case 4 8.247  0.441     
Case 5 2.886  0.467     
Case 6 5.186  0.373     
Case 7 7.521  0.397     
Case 8 2.696  0.326     
Case 9 5.671  0.444     
MLM 10.443  0.438     

Non-inform. 8.156  0.432     
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Table 48: Set (9) calculation results when sample size =3 

Set 9 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.516  0.145  1.462  

Case 2 7.920  1.034  2.232  0.145  1.462  

Case 3 2.640  1.034  3.399  0.145  1.462  

Case 4 7.920  0.517  2.189  0.145  1.462  

Case 5 2.640  0.517  2.464  0.145  1.462  

Case 6 5.280  0.259  1.973  0.145  1.462  

Case 7 7.920  0.259  1.253  0.145  1.462  

Case 8 2.640  0.259  3.414  0.145  1.462  

Case 9 5.280  0.517  0.018  0.145  1.462  

      
SET_9 Shape Scale Data   
Case 1 5.258  0.569  x1 0.56  
Case 2 7.487  0.551  x2 0.55  
Case 3 2.658  0.733  x3 0.31  
Case 4 7.467  0.526     
Case 5 2.818  0.507     
Case 6 3.773  0.390     
Case 7 4.591  0.412     
Case 8 2.369  0.339     
Case 9 5.298  0.517     
MLM 5.424  0.518     

Non-inform. 3.833  0.496     
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Table 49: Set (10) calculation results when sample size =3 

Set 10 Shape Scale 

Bay 
(normal 
prior) 

Dist. C 
MLM 

Dist. C 

Bay (non-
informative) 

Dist. C  

Case 1 5.280  1.034  0.125  0.843  1.856   

Case 2 7.920  1.034  1.827  0.843  1.856   

Case 3 2.640  1.034  3.196  0.843  1.856   

Case 4 7.920  0.517  1.790  0.843  1.856   

Case 5 2.640  0.517  2.495  0.843  1.856   

Case 6 5.280  0.259  1.807  0.843  1.856   

Case 7 7.920  0.259  1.254  0.843  1.856   

Case 8 2.640  0.259  3.335  0.843  1.856   

Case 9 5.280  0.517  0.436  0.843  1.856   

       
SET_10 Shape Scale Data    
Case 1 5.171  0.511  x1 0.34   
Case 2 7.101  0.503  x2 0.55   
Case 3 2.616  0.694  x3 0.36   
Case 4 7.038  0.483      
Case 5 2.818  0.477      
Case 6 4.193  0.373      
Case 7 5.108  0.393      
Case 8 2.544  0.326      
Case 9 5.192  0.474      
MLM 4.682  0.458      

Non-inform. 3.610  0.436      
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Raw results for Table 38 calculated above: 
 
Table 50: Set (1) calculation results when sample size =10 

Set 1 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.555  1.859  1.354  

Case 2 7.920  1.034  2.378  1.859  1.354  

Case 3 2.640  1.034  2.028  1.859  1.354  

Case 4 7.920  0.517  2.321  1.859  1.354  

Case 5 2.640  0.517  2.024  1.859  1.354  

Case 6 5.280  0.259  0.653  1.859  1.354  

Case 7 7.920  0.259  1.326  1.859  1.354  

Case 8 2.640  0.259  2.628  1.859  1.354  

Case 9 5.280  0.517  0.541  1.859  1.354  

      
Set 1 Shape Scale Data   
Case1 5.835  0.515  x1 0.558   
Case2 7.658  0.519  x2 0.380   
Case3 3.253  0.525  x3 0.449   
Case4 7.601  0.513  x4 0.397   
Case5 3.266  0.496  x5 0.519   
Case6 5.089  0.455  x6 0.534   
Case7 6.535  0.474  x7 0.586   
Case8 2.908  0.404  x8 0.563   
Case9 5.810  0.506  x9 0.367   
MLM 7.138  0.511  x10 0.424   

Non-inform. 6.631  0.508     
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Table 51: Set (2 calculation results when sample size =10 

Set 2 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.354  1.112  0.612  

Case 2 7.920  1.034  2.054  1.112  0.612  

Case 3 2.640  1.034  2.092  1.112  0.612  

Case 4 7.920  0.517  2.000  1.112  0.612  

Case 5 2.640  0.517  2.090  1.112  0.612  

Case 6 5.280  0.259  0.807  1.112  0.612  

Case 7 7.920  0.259  0.955  1.112  0.612  

Case 8 2.640  0.259  2.718  1.112  0.612  

Case 9 5.280  0.517  0.344  1.112  0.612  

      
Set 2 Shape Scale Data   
Case1 5.634  0.517  x1 0.347   
Case2 7.334  0.520  x2 0.536   
Case3 3.190  0.526  x3 0.526   
Case4 7.280  0.514  x4 0.579   
Case5 3.201  0.496  x5 0.366   
Case6 4.818  0.451  x6 0.509   
Case7 6.113  0.470  x7 0.568   
Case8 2.825  0.400  x8 0.444   
Case9 5.609  0.507  x9 0.543   
MLM 6.390  0.510  x10 0.298   

Non-inform. 5.882  0.506     
 



 170

Table 52: Set (3 calculation results when sample size =10 

Set 3 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.754  3.021  2.459  

Case 2 7.920  1.034  2.835  3.021  2.459  

Case 3 2.640  1.034  1.996  3.021  2.459  

Case 4 7.920  0.517  2.777  3.021  2.459  

Case 5 2.640  0.517  1.967  3.021  2.459  

Case 6 5.280  0.259  0.488  3.021  2.459  

Case 7 7.920  0.259  1.755  3.021  2.459  

Case 8 2.640  0.259  2.580  3.021  2.459  

Case 9 5.280  0.517  0.754  3.021  2.459  

      
Set 3 Shape Scale Data   
Case1 6.034  0.520  x1 0.464   
Case2 8.110  0.533  x2 0.467   
Case3 3.300  0.542  x3 0.410   
Case4 8.055  0.527  x4 0.600   
Case5 3.314  0.510  x5 0.567   
Case6 5.302  0.468  x6 0.573   
Case7 7.014  0.490  x7 0.559   
Case8 2.919  0.413  x8 0.402   
Case9 6.034  0.520  x9 0.439   
MLM 8.299  0.528  x10 0.499   

Non-inform. 7.737  0.525     
 



 171

Table 53: Set (4) calculation results when sample size =10 

Set 4 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.686  0.556  0.688  

Case 2 7.920  1.034  1.392  0.556  0.688  

Case 3 2.640  1.034  2.259  0.556  0.688  

Case 4 7.920  0.517  1.189  0.556  0.688  

Case 5 2.640  0.517  2.160  0.556  0.688  

Case 6 5.280  0.259  1.582  0.556  0.688  

Case 7 7.920  0.259  1.220  0.556  0.688  

Case 8 2.640  0.259  2.914  0.556  0.688  

Case 9 5.280  0.517  0.497  0.556  0.688  

      
Set 4 Shape Scale Data   
Case1 5.272  0.586  x1 0.410   
Case2 6.457  0.591  x2 0.700   
Case3 3.140  0.590  x3 0.612   
Case4 6.309  0.577  x4 0.509   
Case5 3.136  0.543  x5 0.601   
Case6 3.781  0.466  x6 0.683   
Case7 4.126  0.477  x7 0.439   
Case8 2.545  0.416  x8 0.511   
Case9 5.193  0.566  x9 0.444   
MLM 5.140  0.571  x10 0.332   

Non-inform. 4.787  0.565     
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Table 54: Set (5) calculation results when sample size =10 

Set 5 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.406  0.991  1.301  

Case 2 7.920  1.034  0.510  0.991  1.301  

Case 3 2.640  1.034  2.240  0.991  1.301  

Case 4 7.920  0.517  0.469  0.991  1.301  

Case 5 2.640  0.517  2.267  0.991  1.301  

Case 6 5.280  0.259  1.544  0.991  1.301  

Case 7 7.920  0.259  1.169  0.991  1.301  

Case 8 2.640  0.259  2.895  0.991  1.301  

Case 9 5.280  0.517  0.497  0.991  1.301  

      
Set 5 Shape Scale Data   
Case1 4.910  0.500  x1 0.341   
Case2 5.774  0.505  x2 0.389   
Case3 3.044  0.503  x3 0.493   
Case4 5.696  0.495  x4 0.471   
Case5 3.050  0.476  x5 0.446   
Case6 4.055  0.423  x6 0.197   
Case7 4.473  0.432  x7 0.602   
Case8 2.711  0.384  x8 0.377   
Case9 4.870  0.489  x9 0.613   
MLM 4.356  0.481  x10 0.449   

Non-inform. 4.049  0.475     
 



 173

Table 55: Set (6) calculation results when sample size =10 

Set 6 Shape Scale 

Bay (normal 
prior)      Dist. 

C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.720  1.292  1.537  

Case 2 7.920  1.034  0.333  1.292  1.537  

Case 3 2.640  1.034  2.265  1.292  1.537  

Case 4 7.920  0.517  0.255  1.292  1.537  

Case 5 2.640  0.517  2.259  1.292  1.537  

Case 6 5.280  0.259  1.963  1.292  1.537  

Case 7 7.920  0.259  1.850  1.292  1.537  

Case 8 2.640  0.259  2.960  1.292  1.537  

Case 9 5.280  0.517  0.720  1.292  1.537  

      
Set 6 Shape Scale Data   
Case1 4.565 0.525 x1 0.334   
Case2 5.216 0.550 x2 0.289   
Case3 3.029 0.542 x3 0.494   
Case4 5.079 0.533 x4 0.746   
Case5 3.024 0.505 x5 0.462   
Case6 3.513 0.432 x6 0.534   
Case7 3.621 0.435 x7 0.514   
Case8 2.581 0.395 x8 0.376   
Case9 4.565 0.525 x9 0.532   
MLM 3.988 0.517 x10 0.418   

Non-inform. 3.745 0.510    
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Table 56: Set (7) calculation results when sample size =10 

Set 7 Shape Scale 

Bay (normal 
prior)       

Dist. C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.740  2.845  2.275  

Case 2 7.920  1.034  2.767  2.845  2.275  

Case 3 2.640  1.034  2.015  2.845  2.275  

Case 4 7.920  0.517  2.712  2.845  2.275  

Case 5 2.640  0.517  1.986  2.845  2.275  

Case 6 5.280  0.259  0.494  2.845  2.275  

Case 7 7.920  0.259  1.680  2.845  2.275  

Case 8 2.640  0.259  2.608  2.845  2.275  

Case 9 5.280  0.517  0.706  2.845  2.275  

      
Set 7 Shape Scale Data   
Case1 6.007281123 0.530419226 x1 0.606   
Case2 8.043 0.533 x2 0.456   
Case3 3.281 0.543 x3 0.560   
Case4 7.990 0.527 x4 0.564   
Case5 3.295 0.511 x5 0.513   
Case6 5.234 0.468 x6 0.495   
Case7 6.937 0.489 x7 0.412   
Case8 2.892 0.412 x8 0.554   
Case9 5.985 0.520 x9 0.465   
MLM 8.123 0.528 x10 0.345   

Non-inform. 7.554 0.525    
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Table 57: Set (8) calculation results when sample size =10 

Set 8 Shape Scale 

Bay (normal 
prior)       

Dist. C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.920  1.750  2.025  

Case 2 7.920  1.034  0.414  1.750  2.025  

Case 3 2.640  1.034  2.399  1.750  2.025  

Case 4 7.920  0.517  0.418  1.750  2.025  

Case 5 2.640  0.517  2.389  1.750  2.025  

Case 6 5.280  0.259  2.322  1.750  2.025  

Case 7 7.920  0.259  2.323  1.750  2.025  

Case 8 2.640  0.259  3.140  1.750  2.025  

Case 9 5.280  0.517  0.920  1.750  2.025  

      
Set 8 Shape Scale Data   
Case1 4.363  0.524  x1 0.182   
Case2 5.005  0.548  x2 0.574   
Case3 2.899  0.546  x3 0.681   
Case4 4.885  0.531  x4 0.289   
Case5 2.894  0.506  x5 0.384   
Case6 3.167  0.421  x6 0.595   
Case7 3.166  0.421  x7 0.618   
Case8 2.416  0.388  x8 0.496   
Case9 4.363  0.524  x9 0.402   
MLM 3.531  0.513  x10 0.385   

Non-inform. 3.260  0.504     
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Table 58: Set (9) calculation results when sample size =10 

Set 9 Shape Scale 

Bay (normal 
prior)       

Dist. C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  0.486  1.114  1.394  

Case 2 7.920  1.034  0.265  1.114  1.394  

Case 3 2.640  1.034  2.235  1.114  1.394  

Case 4 7.920  0.517  0.135  1.114  1.394  

Case 5 2.640  0.517  2.251  1.114  1.394  

Case 6 5.280  0.259  1.745  1.114  1.394  

Case 7 7.920  0.259  1.512  1.114  1.394  

Case 8 2.640  0.259  2.915  1.114  1.394  

Case 9 5.280  0.517  0.554  1.114  1.394  

      
Set 9 Shape Scale Data   
Case1 4.797  0.522  x1 0.394   
Case2 5.524  0.527  x2 0.521   
Case3 3.045  0.521  x3 0.283   
Case4 5.413  0.515  x4 0.681   
Case5 3.046  0.490  x5 0.573   
Case6 3.780  0.428  x6 0.548   
Case7 4.013  0.435  x7 0.382   
Case8 2.658  0.390  x8 0.357   
Case9 4.735  0.507  x9 0.358   
MLM 4.181  0.499  x10 0.439   

Non-inform. 3.908  0.492     
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Table 59: Set (10) calculation results when sample size =10 

Set 10 Shape Scale 

Bay (normal 
prior) 

 Dist. C MLM   Dist. C 

Bay (non-
informative) 

Dist. C 

Case 1 5.280  1.034  1.149  5.662  5.060  

Case 2 7.920  1.034  3.630  5.662  5.060  

Case 3 2.640  1.034  1.921  5.662  5.060  

Case 4 7.920  0.517  3.596  5.662  5.060  

Case 5 2.640  0.517  1.896  5.662  5.060  

Case 6 5.280  0.259  0.770  5.662  5.060  

Case 7 7.920  0.259  2.899  5.662  5.060  

Case 8 2.640  0.259  2.470  5.662  5.060  

Case 9 5.280  0.517  1.143  5.662  5.060  

      
Set 10 Shape Scale Data   
Case1 6.429  0.518  x1 0.502   
Case2 8.910  0.520  x2 0.480   
Case3 3.367  0.535  x3 0.540   
Case4 8.876  0.516  x4 0.467   
Case5 3.387  0.506  x5 0.433   
Case6 5.879  0.469  x6 0.595   
Case7 8.165  0.489  x7 0.513   
Case8 3.033  0.415  x8 0.448   
Case9 6.421  0.511  x9 0.518   
MLM 10.942  0.520  x10 0.493   

Non-inform. 10.340  0.518     
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9 Conclusions 
 
Firstly, specimen suitable for micro testing has been designed and an experimental 
procedure for pure bending and combined loading have been proposed. Pure 
bending and combined loading tests have been performed. A separate fracture 
criterion for each form of geometry and loading has been proposed. Besides, 
fracture criterion for combined loading can be used for pure torsion loading based 
on load factor analysis. Finally, a general safety design procedure has been 
proposed. 
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10 Future plans 
 
In the near future, there is a need to correlate the fracture strength of the 
specimens with the etching parameters. Statistical procedures will be employed 
and as such, large number of samples has to be tested. Hence, there is a need to 
standardize experiments to save computational time. Moreover, from an industrial 
point of view, there will probably be demand for real-time reliability tests, which will 
hasten the product developmental process. Characterization of surface roughness 
will probably require image process techniques and surface roughness variation 
within the same piece of wafer and hence strength variation within the same piece 
of wafer will be investigated. 
 
 
 
 
 
 



 180

11 References 
 
(1) N. Asada, H. Matsuki, K. Minami, M. Esashi, “Silicon Micromachined Two-

Dimensional Galvano optical Scanner”, IEEE Transactions on Magnetics, 
Vol.30, No. 6, Nov. 1994 

(2) Tsuchiya T, Tabato O, Sakata J and Taga Y, “Specimen size effect on tensile 
strength of surface-micromachined polycrystalline silicon thin films”, J. 
Microelectromech. System, 1998, 106-113 

(3) Sato K, Shikida M, Yoshioka T, Ando T and Kawabata T, “ Micro tensile test of 
silicon film having different crystallographic orientations ”, Solid-state sensors 
and actuators, 1996, 595-598 

(4) Taechung Yi, Chang-Jin Kim, “Measurement of mechanical properties for 
MEMS materials ”, Meas. Sci. Technol., 10 (1999) 706-716 

(5) P.D. Warren, “Fracture of brittle materials: effects of test method and 
threshold stress on the Weibull modulus ”, Journal of the European Ceramic 
Society, 21,2001,335-342 

(6) Chunsheng Lu, Robert Danzer, and Franz Dieter Fischer, “Fracture statistics 
of brittle materials: Weibull or normal distribution”, Physical review E, vol. 65, 
067102 

(7) Horst Fischer, Walter Rentzsch, Rudolf Marx, “A modified size effect model for 
brittle nonmetallic materials”, engineering fracture mechanics, 69, 2002, 781-
791 

(8) S.L. Fok, B.C. Mitchell, J. Smart. B.J. Marsden, “A numerical study on the 
application of the Weibull theory to brittle materials”, engineering fracture 
mechanics, 68, 2001, 1171-1179 

(9) H. Peterlik, D. Loidl, “Bimodal strength distributions and flaw populations of 
ceramics and fibers”, engineering fracture mechanics, 68, 2001, 253-261 

(10) P. Zinck, J.F. Gerard, H.D. Wagner,” On the significance and description of 
the size effect in multimodal fracture behavior; experimental assessment on E-
glass fibers”, engineering fracture mechanics, 69,2002,1049-1055 

(11) C.P. Chen, T.H. Chang, “Fracture mechanics evaluation of optical fibers”, 
material chemistry and physics, 77, 2002, 110-116 

(12) Dongchu Sun, “A note on noninformative priors for Weibull distributions”, 
journal of statistical planning and inference, 61, 1997, 319-338 

(13) Takahiro Namazu, Yoshitada Isono, Takeshi Tanaka, “Evaluation of size 
effect on mechanical properties of single crystal silicon by nanoscale bending 
test using AFM”, Journal of MEMS, 9, Dec 2000, 4 

(14) J.N. Ding, Y.G. Meng, S.Z. Wen, “Specimen size effect on mechanical 
properties of polysilicon microcantileve r beams measured by deflection using 
a nanoindenter”, materials science and engineering, 83, 2001, 42-47 

(15) William N. Sharpe, “ Effect of specimen size on young’s modulus and fracture 
strength of polysilicon”, Journal of MEMS, 10, Sept 2001, 3 

(16) C. J. Wilson, A. ormeggi, and M. Narbutovskih, “ Fracture testing of silicon 
microcantilever beams”,  Journal of Applied Physics, vol. 79, no. 5 



 181

(17) S.C. Bromley, L.L. Howell, B.D. Jenson, “ Determination of maximum 
allowable strain for polysilicon micro-devices”, engineering failure analysis, 6, 
1999, 27-41 

(18) Xiaodong Li, Bharat Bhushan, “ Fatigue studies of nanoscale structures for 
MEMS/NEMS applications using nanoindentation techniques”, surface and 
coatings tech., 2002 

(19) Sriram Sundararajan, Bharat Bhushan, “ Development of AFM-based 
techniques to measure mechanical properties of nanoscale structures”, 
sensors and actuators, A 3526, 2002, 1-14 

(20) Yoshitada Isono, “ Mechanical characterization of sub-micrometer thick DLC 
films by AFM tensile testing for surface modification in MEMS” 

(21) Yoshitada Isono, “ Pastic deformation of nanometric single crystal silicon wire 
in AFM bending test at intermediate temperatures” 

(22) Hiroshi Miyajima, “ A study on nonlinear torsional characteristics of polyimide 
hinges”, solid-state sensors and actuators,  

(23) G. Schiltges, J. Dual, “ Failure behavior of microstructures under torsional 
loads”, Institute of Mechanics 

(24) M.A. Haque and M. T. A. Saif, “ Microscale materials testing using MEMS 
actuators”, Journal of MEMS, vol. 10, no. 1 

(25) Jan Vedde, Peter Gravesen, “ The fracture strength of nitrogen doped silicon 
wafers”, material science and engineering, B36, 1996, 246-250 

 
 



 182

12 General readings 
 
(1) Gere & Timoshenko, “Mechanics of Materials ”, 4th edition. Chapter 2: Stress 

concentration, page135 
(2) Roark & Young, “Formulas for stress and strain”, 6th edition, Table 20, case 4, 

page348 
(3) Derek Hull, “Fractography (observing, measuring and interpreting fracture 

surface topography” , Cambridge University Press 
(4) T.L Anderson, “Fracture Mechanics (fundamentals and applications)”, 2nd 

edition 
(5) Norman E. Dowling, “ Mechanical Behavior Of Materials (engineering methods 

for deformation, fracture, and fatigue”, Prentice-Hall International Editions 
(6) Murray R. Spiegel, “Schaum’s outline series: Theory and problems of 

Statistics”, 2nd edition 
(7) James R. Evans and David L. Olson, “Introduction To Simulation And Risk 

Analysis”, 2nd edition 
(8) John H. Mathews and Kurtis D. Fink, “Numerical Methods Using Matlab”, 3rd 

edition 
(9) Samuel Kotz and Saralees Nadarajah, “ Extreme Value Distribution: theory 

and applications”, Imperial College Press 
(10) M. Elwenspoek and H. Jansen, “Silicon Micromachining”, Cambridge 

University press 
(11) Sergey Edward Lyshevski, “MEMS and NEMS: Systems, devices and 

structures”, CRC press 
(12) J.F. NYE, “, Physical Properties of Crystals ”, Oxford science publications 
(13) Shafique M.A. Khan, Marwan K. Khraisheh, “Analysis of mixed mode crack 

initiation angles under various loading conditions”, engineering fracture 
mechanics, 67, 2000, 397-419 

(14) Christopher L. Muhlstein, Stuart B. Brown, Robert O. Ritchie, “High-cycle 
Fatigue of single-crystal silicon thin films”, Journal of MEMS, 10, Dec 2001,4 

(15) S.M. Spearing, “Material issues in MEMS”, Acta materialia, 48, 2000, 179-196 
(16) Richard W. Hertzberg, “Deformation and fracture mechanics of engineering 

materials”, 3rd editon 
 
 

 
 



 183

13 Acknowledgement 
 
 
I would like to express my heartfelt thanks to all the people around me who have 
helped me make this research enjoyable and meaningful. 
 
 
 
 
 
 
 
 
 
 
 



 184

 
以上 

 
 

１～184 ページ 完 
修士論文 
 
 
 

平成 16 年 2 月 13 日 提出 
 

２６１９９ チャン ウエー ピン 


