<u>卒業論文</u>

<u>Volmer-Weber型の薄膜成長の</u> <u>初期段階における真性応力発生機構の解明</u>

<u>p.1 p.86 完</u>

<u>平成 18 年 2月 3日 提出</u> <u>指導教員 泉 聡志 助教授</u> <u>40238 前 進也</u>

目次

第1章 緒言・目的	8
1.1 研究の背景	
1.1.1 真性応力問題	
1. 1. 2 表面・界面応力の工学的応用	
1.2 本論文の目的	10
1.3 本論文の構成	10
第2章 真性応力に関する論文データベース	11
第3章 分子動力学による表面・界面エネルギ/応力の算出	17
3.1 計算モデル	17
3.1.1 分子動力学法	17
3.1.2 分子動力学ポテンシャル	18
3.1.3 計算モデル	21
3.1.4 計算条件	22
3.1.5 計算ソフト	22
3. 2 結果	23
3. 2. 1 表面エネルギ・表面応力	23
3. 2. 2 界面エネルギ・界面応力	32
3. 2. 3 真性応力予測	33
3.2.3-1 キャピラリ効果に伴う圧縮応力	33
3.2.3-2 島の合体に伴う引張応力	42
3.2.3-3 重ね合わせ	60
3.3 考察	77
第4章 結論	82

図目次

Fig. 1-1 Illustration of the Volmer-Weber growth mode. (a) Before							
island coalescence. (b) After island coalescence9							
Fig. 2-1 Real-time measuring of curvature of the substrate[5]11							
Fig. 3-1 Schematic illustration of calculation models21							
Fig. 3-2 Comparison of surface energies calculated by MD and the							
first-principles method25							
Fig. 3-3 Comparison of surface energies calculated by MD and							
experiments25							
Fig. 3-4 Comparison of surface stresses calculated by MD and the							
first-principles method27							
Fig. 3-5 Compressive intrinsic stress - film thickness diagram for Cu-34							
Fig. 3-6 Compressive intrinsic stress - film thickness diagram for Ni -34							
Fig. 3-7 Compressive intrinsic stress - film thickness diagram for Al35							
Fig. 3-8 Compressive intrinsic stress - film thickness diagram for Ag-35 $$							
Fig. 3-9 Compressive intrinsic stress - film thickness diagram for Au-36							
Fig. 3-10 Compressive intrinsic stress - film thickness diagram for Pd							
36							
Fig. 3-11 Compressive intrinsic stress - film thickness diagram for Pt37							
Fig. 3-12 Compressive intrinsic stress - film thickness diagram for Pb							
37							
Fig. 3-13 Compressive intrinsic stress - film thickness diagram for Fe							
38							
Fig. 3-14 Compressive intrinsic stress - film thickness diagram for Mo							
38							
Fig. 3-15 Compressive intrinsic stress - film thickness diagram for Ta							
39							
Fig. 3-16 Compressive intrinsic stress - film thickness diagram for W 39							
Fig. 3-17 Compressive intrinsic stress - film thickness diagram for Co							
40							
Fig. 3-18 Compressive intrinsic stress - film thickness diagram for Zr40							
Fig. 3-19 Compressive intrinsic stress - film thickness diagram for Ti 41							
Fig. 3-20 Compressive intrinsic stress - film thickness diagram for Mg							

4
Fig. 3-21 Tensile intrinsic stress - film thickness diagram in model
and C for Cu4
Fig. 3-22 Tensile intrinsic stress - film thickness diagram in model B fo
Cu4
Fig. 3-23 Tensile intrinsic stress - film thickness diagram in model
and C for Ni4
Fig. 3-24 Tensile intrinsic stress - film thickness diagram in model B for
Ni4
Fig. 3-25 Tensile intrinsic stress - film thickness diagram in model
and C for Al4
Fig. 3-26 Tensile intrinsic stress - film thickness diagram in model B fo
Al4
Fig. 3-27 Tensile intrinsic stress - film thickness diagram in model
and C for Ag4
Fig. 3-28 Tensile intrinsic stress - film thickness diagram in model B fo
Ασ4
Fig. 3-29 Tensile intrinsic stress - film thickness diagram in model
and C for Au
Eig 2 20 Tancile intrincie strong film thickness diagram in model P fo
Fig. 5-50 Tensile intrinsic stress - finit thickness diagram in model B to
Fig. 3-31 Tensile intrinsic stress - film thickness diagram in model
and C for Pd4
Fig. 3-32 Tensile intrinsic stress - film thickness diagram in model B fo
Pd4
Fig. 3-33 Tensile intrinsic stress - film thickness diagram in model
and C for Pt5
Fig. 3-34 Tensile intrinsic stress - film thickness diagram in model B fo
Pt5
Fig. 3-35 Tensile intrinsic stress - film thickness diagram in model
and C for Pb5
Fig. 3-36 Tensile intrinsic stress - film thickness diagram in model B fo
Pb5
Fig. 3-37 Tensile intrinsic stress - film thickness diagram in model
0

and C	for Fe52
Fig. 3-38	Tensile intrinsic stress - film thickness diagram in model B for
Fe	52
Fig. 3-39	Tensile intrinsic stress - film thickness diagram in model A
and C	for Mo53
Fig. 3-40	Tensile intrinsic stress - film thickness diagram in model B for
Мо	53
Fig. 3-41	Tensile intrinsic stress - film thickness diagram in model A
and C	for Ta54
Fig. 3-42	Tensile intrinsic stress - film thickness diagram in model B for
Та	54
Fig. 3-43	Tensile intrinsic stress - film thickness diagram in model A
and C	for W55
Fig. 3-44	Tensile intrinsic stress - film thickness diagram in model B for
W	55
Fig. 3-45	Tensile intrinsic stress - film thickness diagram in model A
and C	for Co56
Fig. 3-46	Tensile intrinsic stress - film thickness diagram in model B for
Со	56
Fig. 3-47	Tensile intrinsic stress - film thickness diagram in model A
and C	for Zr57
Fig. 3-48	Tensile intrinsic stress - film thickness diagram in model B for
Zr	57
Fig. 3-49	Tensile intrinsic stress - film thickness diagram in model A
and C	for Ti58
Fig. 3-50	Tensile intrinsic stress - film thickness diagram in model B for
Ti	58
Fig. 3-51	Tensile intrinsic stress - film thickness diagram in model A
and C	for Mg59
Fig. 3-52	Tensile intrinsic stress - film thickness diagram in model B for
Mg	59
Fig. 3-53	Intrinsic stress - film thickness diagram for Cu61
Fig. 3-54	StressThickness - film thickness diagram for Cu61
Fig. 3-55	Intrinsic stress - film thickness diagram for Ni62
0	U C

Fig. 3-56	StressThickness - film thickness diagram for Ni	62
Fig. 3-57	Intrinsic stress - film thickness diagram for Al	63
Fig. 3-58	StressThickness - film thickness diagram for Al	63
Fig. 3-59	Intrinsic stress - film thickness diagram for Ag	64
Fig. 3-60	StressThickness - film thickness diagram for Ag	64
Fig. 3-61	Intrinsic stress - film thickness diagram for Au	65
Fig. 3-62	StressThickness - film thickness diagram for Au	65
Fig. 3-63	Intrinsic stress - film thickness diagram for Pd	66
Fig. 3-64	StressThickness - film thickness diagram for Pd	66
Fig. 3-65	Intrinsic stress - film thickness diagram for Pt	67
Fig. 3-66	StressThickness - film thickness diagram for Pt	67
Fig. 3-67	Intrinsic stress - film thickness diagram for Pb	68
Fig. 3-68	StressThickness - film thickness diagram for Pb	68
Fig. 3-69	Intrinsic stress - film thickness diagram for Fe	69
Fig. 3-70	StressThickness - film thickness diagram for Fe	69
Fig. 3-71	Intrinsic stress - film thickness diagram for Mo	70
Fig. 3-72	StressThickness - film thickness diagram for Mo	70
Fig. 3-73	Intrinsic stress - film thickness diagram for Ta	71
Fig. 3-74	StressThickness - film thickness diagram for Ta	71
Fig. 3-75	Intrinsic stress - film thickness diagram for W	72
Fig. 3-76	StressThickness - film thickness diagram for W	72
Fig. 3-77	Intrinsic stress - film thickness diagram for Co	73
Fig. 3-78	StressThickness - film thickness diagram for Co	73
Fig. 3-79	Intrinsic stress - film thickness diagram for Zr	74
Fig. 3-80	StressThickness - film thickness diagram for Zr	74
Fig. 3-81	Intrinsic stress - film thickness diagram for Ti	75
Fig. 3-82	StressThickness - film thickness diagram for Ti	75
Fig. 3-83	Intrinsic stress - film thickness diagram for Mg	76
Fig. 3-84	StressThickness - film thickness diagram for Mg	76
Fig 3-85	(a) Observed stress-thickness vs nominal film thickness fo	r Ag
thin fi	ilms on oxidized Si substrates. (b) The same data replotte	ed as
stress	-thickness divided by the nominal film thickness	78
Fig 3-86	StressThickness - film thickness diagram and Intrinsic str	ess -
film tl	hickness diagram for Ag	79

Fig	3-87	The typical	stress-tl	hickness	evolution	as a	function	of
t	thickne	ss for Cu depo	sition on	borosilic	ate glass			79
Fig	3-88	Intrinsic	stress	- film	thicknes	ss d	iagram	and
	а. п	1 • 1 • • 1	.1 . 1	1.	6 0			~ ~

StressThickness - film thickness diagram for Cu ------80 Fig 3-89 Overlay of stress thickness vs thickness plots taken during

electrodeposition of Ni onto a Au substrate. -----80

Fig 3-90 Intrinsic stress - film thickness diagram and StressThickness - film thickness diagram for Ni------80

表目次

Table 2-1	Data base of papers on intrinsic stress 113
Table 2-2	Data base of papers on intrinsic stress 214
Table 2-3	Data base of papers on intrinsic stress 315
Table 2-4	Data base of papers on intrinsic stress 416
Table 3-1	Parameters for GEAM[25]20
Table 3-2	Surface energy24
Table 3-3	Surface stress26
Table 3-4	Surface energies of fcc metals28
Table 3-5	Surface energies of bcc and hcp metals29
Table 3-6	Surface stresses of fcc metals30
Table 3-7	Surface stresses of bcc and hcp metals31
Table 3-8	Interface energies32
Table 3-9	$Elastic \ constants \ , Poisson \ ratio \ and \ Young's \ modulus [41] \ 43$
Table 3-10	Observed stresses during VW growth77
Table 3-11	Calculated stresses by molecular dynamics77

第1章 緒言・目的

1.1 研究の背景

1.1.1 真性応力問題

現在の半導体デバイスは,多種多様な薄膜から構成されており,とりわけ近 年の大規模集積回路の微細化に伴い,より高度な薄膜形成技術が要求されてい る.こうした中,形成された薄膜内に応力(膜応力)が発生する問題が数十年も前 より知られている[1].膜応力は,膜と基板の剥離・膜と基板界面からの転位の 発生の駆動力となる.また,膜の電気的特性に著しい影響を及ぼし,膜質低下 の大きな要因となる.そのため,膜応力制御は今尚深刻な課題となっている. よく知られた膜応力の発生要因の一つは熱応力であり,熱応力は,基板と薄膜 材料の線膨張係数が既知であれば予測できる.しかしながら,観測される膜応 力と熱応力とは一般に一致しない.なぜなら,熱応力とは別に,薄膜材料の基 板上への堆積・成長という過程において,膜内に歪みが蓄積し応力が発生する ためである.この応力は熱応力とは区別され,真性応力と称されている.

真性応力発生メカニズムの解明を試みる研究は,これまでにも活発に行われ ており,Doerner ら[2]や Koch[3]は様々な膜種・膜製法・成長様式に応じた応 力発生メカニズムを系統的に整理した.特に近年の真性応力問題の関心は,次 世代半導体デバイスの薄膜材料として期待される多結晶薄膜,或いは大規模化 が容易なアモルファス薄膜へと向けられている[4].今後,薄膜の厚みのナノオ ーダー化と薄膜の多層集積化がより一層進むことが予想され,薄膜形成過程の 中でも成長初期に発生する真性応力メカニズムの解明が必要とされている.

多結晶薄膜やアモルファス薄膜は,基板上で Volmer-Weber 型成長(以後 VW 成長)と呼ばれる三次元核成長をすることが知られている.Floro らのグループ は,基板の反りを高精度で測定することで,VW 成長初期過程で生じる真性応 力のリアルタイム(in-situ)測定を実現した[5].彼らの実験から,成膜初期には圧 縮応力が発生し,その後,膜が堆積するにつれて引張応力が生じるという傾向 が得られている.Cammarata ら[6]は,この初期の圧縮応力発生の有力なメカ ニズムの一つとしてキャピラリ応力(Capillary-induced growth stress)を提案 した.このメカニズムの基礎は,真性応力の発生要因を表面・界面応力効果と する点にある.すなわち,VW 成長初期には,基板上に独立した微小な三次元 核(結晶粒)が形成される.微小な核は表面応力と界面応力の影響を受けて歪み, 表面積に依存した平均原子間距離を持つ.核がある程度大きくなると,界面と の拘束が強くなって核は自由に変形できなくなるため,圧縮の真性応力が発生 する.現在,キャピラリ応力の他にも,表面・界面応力効果に基づく圧縮応力 の発生メカニズムがいくつか提案されており,活発な議論がなされている[7-9]. 一方,引張応力は,核同士の合体モデルで説明でき,そのメカニズムとして確 立しつつある.初期核は,成長が進展するに伴い,核同士で合体を始める.合 体の有無は表面エネルギと界面エネルギの釣り合いで決まり,合体時には核同 士が弾性的変形を受ける.この時引張応力が発生する.この応力は,弾性論[10, 11]や有限要素法[12,13]を用いた評価及び実験との比較が行われている.

Fig. 1-1 Illustration of the Volmer-Weber growth mode. (a) Before island coalescence. (b) After island coalescence

このように,薄膜のマクロな機械的特性は,表面と界面の特性に強く支配される.表面と界面は基本的に不均質な部位であり,そこでの連続体近似の成立 は疑わしい.よって,従来の連続体ベースの視点に止まらず,分子レベルでの 視点から真性応力制御の問題に取り組むことが重要となる.本研究では,その 第一歩として,真性応力予測のキーパラメータである,表面(界面)エネルギ・表 面(界面)応力といった物理的特性を分子レベルから評価する.

1.1.2 表面・界面応力の工学的応用

表面(界面)応力は,固体表面のミクロな微視的構造とマクロな特性とを結ぶ固体 表面特有の物理量である.歴史的にはGibbs[14]によって熱力学的観点から定義 され,その存在は古くから知られてきた.しかしながら,表面応力に強く依存 した現象が注目されてきたのは,ナノテクノロジーの発展が著しい近年のこと といってよい.先に述べた真性応力も,表面応力効果のうちの一つであり,そ の制御と予測が大きな研究分野として現在確立している.他,表面応力効果の 例として,ナノ構造体の自己組織化[15],表面再構成[16],表面での化学反応[17] といった現象が知られ,多くの研究がなされている.中でも近年,表面応力効 果を逆にセンサーとして利用する研究が IBM を中心に精力的になされており, 注目を集めている[18].基板表面に分子が吸着すると,表面応力が変化する.そ の時の応力変化を基板のそりとして計測することで,10⁻²¹mol という微量物質 の検知が可能なセンサー開発が実現されている[19].同様の手法を用いて, Bashir ら[20]は1 nm/5×10⁻⁵ Δ pH の高精度な pH センサーを構築している.ま た,Fritz ら[21]は表面応力を利用して,DNA 生体分子量の検知に成功しており, 表面応力はバイオテクノロジー分野への未曾有の貢献の可能性を秘めていると いえる.

1.2 本論文の目的

金属の表面・界面の安定構造探索の為には,構造緩和の時間スケールの問題 を克服し,かつ分子レベルでの計算をする必要がある.そこで,本論文では, バルク,表面・界面モデルに対して古典分子動力学法を用いて計算することで, 表面・界面の特性評価を行う.

更に,分子動力学シミュレーションから得られた表面・界面の特性値を,既 存の真性応力発生モデルに当てはめて薄膜の応力分布・応力変化を予測し,実 験値との,主に定性的な傾向の比較から,真性応力発生機構の妥当性の検証を 行う.

1.3 本論文の構成

本論文は,本章を含め,全4章から構成される.以下に各章の概要を示す. 第2章 真性応力に関する論文データベース では,研究の一環として集めた, 真性応力に関する論文を整理し,最近の真性応力発生メカニズムの研究の動向

について述べる.

第3章 分子動力学法による表面・界面エネルギ/応力の算出 では,表面・界 面の特性値を,分子動力学法を用いて計算し,それらの値から真性応力の値を 予測し,実験との比較を行う.

第4章 結論 では,本研究のまとめをし,総括を述べる.

第2章 真性応力に関する論文データベース

薄膜の真性応力について,引張の真性応力に関しては確立された発生メカニ ズムが存在するが,初期の圧縮応力に至っては,未だ不明な点が多く,今なお 論争中である.そこで,本章では,他の大学や研究機関で行われている,真性 応力発生メカニズム解明に向けた研究に関する論文を調査し,分類・整理した 結果を記述し,最近の真性応力発生メカニズム研究の動向を探る.

◆ Stoney[22]らは,真性応力によって撓んだ基板の曲率 κ が,真性応力と薄膜の膜厚に比例することを示し,

$$\sigma h_f = \frac{M_s h_s^2}{6} \kappa \tag{2. 1}$$

という式を導いた.但し,E:ヤング率, :ポアソン比,h:膜厚,f:薄 膜,s:基板 として, $M_s = \frac{E_s}{1-\nu_s}$ である.

現在の薄膜の真性応力のリアルタイム測定の大半は ,Fig. 2-1 のようにして 測定した基板の曲率半径 $R = \frac{1}{\kappa}$ を式(2.1)に代入して ,応力と膜厚の積を算 出することで行われている .

Fig. 2-1 Real-time measuring of curvature of the substrate[5]

◆ Koch[23]らは, VW 成長における応力発生モデルを3つ提案した.

(A) 結晶粒界を出入りする原子の可逆的な運動により,圧縮或いは引張応力が生じる.

(B) 付着原子の総数の変化に依存する表面化学ポテンシャルにより ,圧縮或いは 引張応力が発生する.

(C) 圧縮応力は島合体前の段階のキャピラリ効果によって生じ,引張応力は再結 晶化によって成長が阻害されるときに増大する.

彼らは温度によって結晶粒径と表面の mobilit を広範囲に変えられる Fe を薄 膜の材料に用いて実験を行った.その結果から,(1)島合体後の定常状態の圧縮 応力は結晶粒径に深く依存すること,(2)膜厚の増加に伴い,成長の阻害による 引張応力は増加すること,を示し,キャピラリ効果と関係のないモデル(A)と(B) ではこの2つの事実を説明できないと述べた.しかし,キャピラリ効果も再結 晶化も,可逆的な引張応力の増加を説明できるわけではなく,更なる研究が必 要であるとしている.

◆ Friesen[24]らは,超高真空(UHV)下で e-beam evaporation によってアモルファスの基板上に Cu を堆積させる実験を行い,膜成長のどの段階においても,非平衡の付着原子の数が膜の表面応力に大きな影響を与えていると結論付けた.これは,非平衡の成長状態が,膜成長完了後に観測される残留応力に深く関わっていることを意味する.

以下に,研究の一環として今までに集めた論文のデータベースの一部を抜粋 して掲載する.

Table 2-1	Data base of papers on intrinsic stress 1
-----------	---

					material,depositio
No.	Title	Authers	Source, Year	Abstract	n process
1	The role of oxygen in	A.Misra ,	Journal of Vacuum	基板の負のbiasのfunctionとしての真性応力と酸素含有量について。bias	
	the intrinsic tensile	M.Nastasi	Science &	が0 -100[V]まで増加すると真性応力は増加し、酸素含有量は減少。-	
	residual stress		Technology A	100[V]を超えると真性応力は減少し、酸素含有量は変化しなくなる。	
	evolution in sputter-		(Vacuum,		
	deposited thin metal		Surfaces, and		
	films		Films), v 18, n 5,		
			SeptOct. 2000, p		
			2517-21		
2	Intrinsic stress	Y.Yin,D.McKe	Surface and	10~450[V]の基板のbiasのfunctionとしてプラズマCVDで作られたa-Si:H	a-Si:H : プラズマ
	induced by substrate	nzie,M.Bilek	Coatings	薄膜について。他の材料の薄膜と同様、エネルギが増加するにつれて、	CVD
	bias in amorphous		Technology, v 198,	真性応力は最初最大値まで増加し、その後減少する。	
	hydrogenated silicon		n 1-3 SPEC. ISS.,		
	thin films		Aug 1, 2005, p		
			156-160		
3	Intrinsic tensile	Rajamani, A.;	Applied Physics	多晶質filmの、島の合体中の引張応力の、有限要素法計算。昔:応力は島	
	stress and grain	Sheldon,	Letters, v 81, n 7,	が最初に合体するときにだけ発生 今回のモデル:2つの隣接する表面	
	boundary formation	B.W.; Chason,	12 Aug. 2002, p	が共に成長し、結晶粒界を形成するときも発生。 成長過程の	
	during Volmer-Weber	E.; Bower,	1204-6	inherent(固有の) part = 応力の成長	
	film growth	A.F.			
4	Tensile stress	S.C.Seel,C.V.	Journal of Applied	Volmer-Weberメカニズムで成長する薄膜の、引張応力の成長のkinetics	
1	evolution during	Thompson, S.	Physics, v 88, n	をFEMで予測。引張応力の発生は、島の衝突と合体によるもの。	
1	deposition of	J.Hearne, J.A.	12, 15 Dec. 2000, p	Concurrent応力は、ミクロ構造依存性の侵食(浸透)メカニズムを経て緩和	
1	Volmer-Weber thin	Floro	7079-88	する。応力発生のFEM計算とミクロ構造依存性の応力緩和のモデルを併	
	films			せて考えることで、シミュレーション結果から、Ag薄膜の応力成長をリア	
				ルタイムで計測することで観測される、複雑な温度依存性の傾向を定性	
				的に示すことができた。	
5	Amorphous-silicon	Stannowski,	Journal of Non-	a-Si:HのTFT(Thin Film Transistor)のmobilityとstabilityについて、Field-	a-Si:H : VHF-
	thin-film transistors	B.; Schropp,	Crystalline Solids,	effect mobilityとstabilityを制御する重要なパラメータは、a-Si:H層の真	PECVD,hot wire
	deposited by VHF-	R.E.I.;	v 299-302, April,	性応力であるという提案。VHF-PECVDとhot wire CVDで作ったa-Si:Hの	CVD
	PECVD and hot-wire	Wehrspohn,	2002, Suppl. 2, p	bottom-gate TFT 全TFTは、0.6~0.7[cm2/Vs]のmobilityで良い特性。平	
	CVD	R.B.; Powell,	1340-1344	均activationエネルギEA(真性応力と関係あり)と、a-Si:Hの欠陥生成のた	
		M.J. 02, p		めのb	
6	The origin of intrinsic	S.P.Kim,S.K.	Thin Solid Films, v	SiF4/O2 flow ratioとAr flow rateのfunctionとしてECR-PECVDで作られた	SiOF : ECR-
	stress and its	Choi	379, n 1-2, Dec,	SiOF薄膜。FTIRでSi-OとSi-F結合の形成を確認。 SiOF薄膜の残留応力	PECVD
	relaxation for SiOF		2000, p 259-264	を計算。SiF4/O2 ECRプラズマでdepositされているときは引張(真性)応	
	thin films deposited			力、SiF4/O2 Ar ECRプラズマのときは圧縮(真性)応力。Arイオンの、膜へ	
	by electron cyclotron			の衝突により、引張と圧縮の違いが生じる。 圧縮応力のとき 圧縮応力	
	resonance plasma -			の大きさはSiF4/O2ratioの増加と共に減少。 ある Ar flow rat	
	enhanced chemical				
	vapor deposition				
7	Intrinsic stress	Miller, D.C. ;	Scripta Materialia,	as-deposited conditionとannealed stateにおける、Au/Cr/Siマイクロカ	
	development and	Herrmann.	v 52. n 9. Mav	ンチレバーの研究(24h.225) isothermal hold中の梁の曲線の経時変化	
1	microstructure	C.F.; Maier.	2005, p 873-9	の観察。secondary grain growthが、不均一に分布したtwinsと転位欠陥を	
1	evolution of	H.J.; Georae		含むAuの内部で見られた。アニール中に、Cr層の拡散輸送が見られた	
1	Au/Cr/Si multilayer	S.M.; Stoldt.		"rolling hill"topography中に並んだ小さな塊が、アニールの前と後両方で	
1	thin films subject to	C.R.; Gall, K.		自由表面上に見られた。atomic layer depo	
1	annealing				
8	Residual stress in	Y.Q. Fu, J.K.	Materials Science	異なる SiH4 / H2比での、 RF(13.56MHz)PECVDによる アモルファ ス及びナ	nc-Si(Si:H)薄膜:
1	amorphous and	Luo, S.B.	and Engineering:	ノ結晶Si薄膜について。薄膜の残留応力を、SiH4/(SiH4+H2)比のfunction	RF-PE-CVD
1	nanocrystalline Si	Milne, A.J.	B, In Press,	としてcurvature methodで測定。SiH4率が3%以下でナノ結晶が現れる。	
1	films prepared by	Flewitt and	Corrected Proof.	SiH4率を2%まで減らすと、薄膜の真性応力増加。SiH4率2%以下で、薄膜	
1	PECVD with	W.I. Milne	Available online 3	の真性応力急減。(他の、薄膜成長中の応力発生・緩和のメカニズム「イ	
1	hydrogen dilution		October 2005,	オン衝突効果、水素及びbond-reconstructionで誘起された水素、	
1	,		,	nanocomposite効	
9	Internal stress in	Laxmi Sahu.	Thin Solid Films.	HWCVDでdepositされた μ c-Si:H薄膜の応力の決定と、その温度	μc-Si:H : HW-
ľ	Cat-CVD	Nitin Kale.	In Press,	treatmentによる変化について。Si:H薄膜の真性応力値の解析の結果	CVD
1	microcrystalline Si:H	Nilesh	Corrected Proof	250 付近でdepositされた薄膜は、薄膜内のよりよいnetworkとontimum	
1	thin films	Kulkarni, R.	Available online 19	hydrogen contentのために、低い応力値を示す.また.dopeされた薄瞳	
1	-	Pinto, R.O.	August 2005	は、結晶粒サイズが比較可能な間で、intrinsic filmに比べ1桁大きい内部	
1		Dusane and		応力値を示したしかし、アニール中に応力は最小値となり、非常に低い	
1		B. Schröder		応力の薄膜を得た。	
10	Competition between	Sheldon, B.W	Journal of Applied	AIN薄膜のmolecular-beam epitaxy中の応力成長を、in situ(リアルタイム)	AIN
<u> </u>	tensile and	: Rajamani	Physics, v 98, n 4	curuvature measurementでmonitorした。成長速度の変化が、様々な応力	
1	compressive stress	A.: Bhandari	15 Aug. 2005 n	の変化をもたらし、より多くの引張応力が高い成長速度において組容され	
1	mechanisms during	A.: Chason	43509-1-9	た。この現象は、引張・圧縮両方のメカニズムを説明する、応力成長の	
1	Volmer-Weber	E.: Hona		kinetic modelによって説明できる。引張componentは、結晶粒界形成の周	
1	growth of aluminum	S.K.:		有の特徴として提案されたメカニズムに基づいている。 圧縮component	
1	nitride filme	Beresford R		If arowth fl	

Table 2-2	Data base of	papers on	intrinsic stress	2
-----------	--------------	-----------	------------------	---

No	Title	Authors	Source Voor	Abstract	material, depositio
11	Thickness-		Journal of Applied	nustract 厚さ5.umまでのSiO2厚時は 2層と3層の両方の嫌浩として holicoop	n process SiO2 helicon
Ľ'	dependent stress in	Charles C	Physics v 07 n 9	iFcoping CVOIC2序展は、2層Co層の同力の構造CUC、IEICON	acticated reactive
	plasma-deposited	Bulla DAP	Apr 27, 2005, p	beam evaporation source)によって形成されている。この膜の応力は	evaporation
	silicon dioxide films	Love, J.D.:	084912	optical waveguide fabricationのcontextにおいて調べられている。 膵厚の	orapolation
		Boswell, R.W.		functionとしてのSiO2-Si二層の応力のモデルは、Volmer-Weberの膜成長	
				メカニズムの言葉	
12	Intrinsic stress	Scharf, T.;	Journal of Applied	UHV(ultrahigh vacuum)内で、様々なAr分圧でlaser depositされた多結晶	多結晶パーマロイ
	evolution in laser	Faupel, J.;	Physics, v 94, n 7,	パーマロイ (Ni-Fe合金)とAgの薄膜のin situ応力測定。UHV中では、粒子	とAg : laser
	deposited thin films	Sturm, K.;	1 Oct. 2003, p	の運動エネルギが高い(約100[eV])とき、初期成長過程では応力は表面エ	deposit
		Krebs, HU.	4273-8	ネルギとintermixing効果に支配されている。生成時間の経過と共に、	
				capillary(毛管)-induced圧縮で成長する応力が観測された。そして、薄膜	
				の応力は、成長モード(島成長或いはlayer-by-layer成長)に影響されてい	
40	Madal fan inteinnin	Maria C.O.	Dhuning Dauigur	る。Vo 甘たトに艾芝したフェリフェフ会民芽唠は、まあび少し支援につい	고도비 그는 그 소문
13	Model for intrinsic	Mayr, S.G.;	Physical Review	基板上に ※有した パモルファス 玉馬溥 脾は、 表面形状と具性心力と	アモルファ 人金属
	amorphous thin films	Samwer, K.	Letters, v 67, H 3,	concerny る族序に低任し、詳細なapplied inaterial systemsとは無度版	
	amorphous thin inns		36105/1-36105/4	a、成長のFegineの違いによりて特徴的からurface measureに繋がるモデルの提	
			00100/1 00100/4	示これにより 目的に合った薄膜生成のための 薄膜のpreparation	
				parameterに依存する応力の、量子論的な予測が可能となった。	
14	Nanocrystalline	Goncalves, C.	Thin Solid Films, v	水素の希釈と、RFmagnetron sputtering methodにより250 で形成された	nc-Si:H薄膜:
L	silicon thin films	; Charvet, S.;	403-404, 1 Feb.	nc-Si:H薄膜の構造的・電気的特性へのpressureの効果は、気相の混合	hydrogen dillution,
	prepared by	Zeinert, A.;	2002, p 91-6	(Ar+x%H2)における広範囲での全圧(1~15Pa)、水素の希釈濃度(30~	RF magnetron
	radiofrequency	Clin, M.;		100%)で研究されている。 ラマン分光法、赤外吸収、X線diffraction、DC	sputtering method
	magnetron	Zellama, K.		electrical conductivity、真性応力測定の組み合わせが、薄膜の特性を調	
	sputtering			べるのに使われている。曲げと引張振動モード領域中の明確なdoubletに	
	-				
15	Surface islands and	Kouris, D. ;	Source: Surface	一般的な薄膜成長の状況トでの、bccの(001)表面に付着した原子と、高単	一般的な薄膜
	their elastic	Peralta, A.;	Science, V 445, n	層或いは2、3次元の局の間の弾性相互作用について。固有ひ9 みと衣 あたわる概念に其ずく 天遠结わい(数) も)調知エデルが、仕美原スト自	
	Interaction with	Sieradzki, K.	2-3, 20 Jan. 2000,	山心力の慨忌に奉う(、个理約な(ガ離しに)調和モナルか、竹有原士と局 の方方の影響で弾性提を佐い出す。は美原之は、担互佐用エネルギの効	
	auatom		p 420-9	の存在の影響で弾住場を作り山り。竹有原丁は、相互作用エイルキの行	
				ちにように、局にうさりつうれるか、局に反光する(弾かれる)。弾性場は 一船に overlaverが圧縮されているときは 平田で2次元的な成長モード	
				のhomoepitaxyもheteroepitaxyを好きないことが得られた。弾性相互作用	
				だけに	
16	Growth of Ge islands	Zhenyang	Physica E, v 23, n	lithographicaに定義された2次元の周期的な窪みと共に(001)Si基板上に	
	on prepatterned Si	Zhong ;	3-4, July 2004, p	成長するGeの島の成長と特性に関する報告。Thermal desorptionとそれ	
	(001) substrates	Halilovic, A.;	243-7	に続くSi緩衝層の成長の後で、これらの窪みは反転した先端のないピラ	
		Lichtenberger		ミッドの形になる。このような予め模様のついた基板上で、レンズ状のGe	
		, H.; Schaffler,		の多い島は、平らな基板上で島を形成するのに必要な量よりも少ないGe	
		F.; Bauer, G.		のdepositionで、窪みの底において成長する。これは、Geが窪みの	
47	Ashees Eitherst	Feelest	Dhusias D. 453	sidewallから移動するために、Geが遅みの底に集合することが原	
17	A phase-field model	Eggleston,	Physica D, v 150,	乗力性の労団エイルキをもつ_相糸に対し、コンヒュータ計算が有効な abage foldモデルを開発した。このマプローチは、土八支い国大性に対	
	ior nignly anisotropic	J.J.; McFaddon	11 1-2, 15 March	pridse-netioモテルを開発した。このアノローナは、十分局い異万性に対し、関西がcornerを持った11結晶方位を生きことを可能としている。このデ	
L	interiaciai elleryy	G B ·	2001, p 31-103	い、アロバーのIntererrorの局所平衡占を強化」 const が厳密な位置のtrackingなし	
L		Voorhees		で増加したり減少したりすることを可能とするような相則化を採用してい	
L		P.W.		る。様々な程度の非等方性に対して数値シミュレーションを行ったところ	
L				その結果は、解析的な平衡のshapeとよく一致し、多岐にわたる初期条件	
				に対する	
18	Efficient phase-field	Wise, S.M.;	Superlattices and	source termを処理するCahn-Hilliard evolution equationを用いて、	
L	simulation of	Lowengrub,	Microstructures, v	coherentな島でぎっしりと取り囲まれた基板上への連続的なmass	
	quantum dot	J.S.; Kim,	36, n 1-3, July-	deposition中の、歪んだheteroepitaxial薄膜の形状成長を研究した。弾性	
	formation in a	J.S.; Johnson,	Sept. 2004, p 293-	特性と表面エネルギは非等方性であり、表面エネルギの異方性は方向性	
	strained	W.C.	304	とfacetを失うほど強かった。洗練されたfinite-difference/multigrid method	
<u> </u>				とimplicit(陰関数の)time integration s	
19	Stress distributions	Krishnamurth	Acta Materialia, v	新しい連続モデルを用いて、基板の酸化を経て形成される多結晶の酸化	
L	in growing	y, R. ;	52, n 13, Aug 2,	限の応刀発生を解析した。このモテルは、2次元での多結晶のミクロ構造	
L	polycrystalline oxide	Srolovitz,	2004, p 3761-3780	の油与を含む。全ての独立した構成粒子の拡散と、酸化反応の速さと、これにの広力の効果を、熱力学的になど、これにの広力の効果を、熱力学的になど、これになったたなが思える。	
L	mms	U.J.		れらの心力の対米を、熱力子的にself-consistentな方法で説明する。結 見約用け、真が動の道路を、敵化形式の担いにままでの知ちまた。	
L				田和211は、同加取の追加と、取10形成の場という回有の仅割を米に9。 酸化の答理各性(真連の酸素/限イナンが勤ード誌可能な酸素/限イナン)	
L				HXIUショュホロ(回座シ股系/1%コイノ加取、に取り肥み取系/1%ライノ)の拡散性)を制御した異なる拡散と 結晶対異/バルクの異かる抗動ドを	
L					
20	Stress relaxation	Liang Dong ·	Journal of Applied	misfitした薄膜の、低温での成長と緩和を、Lennardlonesポテンシャルを	
[]	and misfit dislocation	Schnitker, J.:	Physics, v 83, n 1.	用いた2次元MDシミュレーションに基づいて解析した。表面形状の時間	
L	nucleation in the	Smith, R.W.;	1 Jan. 1998, p	発展と、misfit転位の生成と応力緩和のメカニズムを観測した。	
L	growth of misfitting	Srolovitz,	217-27	Pseudomorphic膜成長を、臨界厚さまで観測した。あるcaseでは、膜内の	
	films: a molecular	D.J.		voidの形成は応力の一部を緩和させる。臨界厚さにおいて、転位はmisfit	
L	dynamics simulation			の大部分を生成・緩和する。臨界厚さは、格子のmisfitの減少と共に増加	
1	study			し、misfitの符号に依存する。圧縮応力の作用している薄膜の臨	

					motorial depositio
No	Title	Authers	Source.Year	Abstract	n process
21	On the stability of	Srolovitz.	Acta Metallurgica.	簡単な線形安定解析を提示して、弾性的に応力のかかったbodyの名目上	in process
	surfaces of stressed	D.J.	v 37, n 2, Feb.	平らな表面が、臨界波長より大きな波長での揺らぎの成長に関して不安定	
	solids		1989, p 621-5	であることを検証した。1次元に抑制され、一様な膨張を前提とする固体	
				においては、この臨界波長は、 E/(^2)となる。(:表面エネルギ、E:ヤ	
				ング率、 :強制膨張と関連する公称応力) 最も不安定となるモードは、	
				(表面拡散と蒸発/凝縮を考慮したときの)質量輸送の方法に依存する。予	
				想された不安定状態の波長は、GeAs基板上のInGaAs薄膜の観測結果と	
-				一致した。	
22	The intrinsic stress	Koch, R.	Journal of	薄膜は、生成中に大きな具性心力を発生させることはよく知られている。	
	of polycrystalline and		Physics:	具性応力は、膜内の金んに領域(結晶松界、転位、Void、不純物等)或いは 購(其に体えのminute)。 線形電気数の違い等) 地帯(真応)	
	filme		Matter v 6 p 45 7	戻/ 茎似(桁丁のIIISINatch、緑膨張術数の運い等)や炭/長空(衣面心力、 販着等)用面で発生した11 動的過程(再結晶化 相互拡散等)によって生じ	
	iiiiio		Nov 1994 p 9519-	たりする。これらの応力の寄与のほとんどのmagnitudeが聴の形状と直接	
			50	関係があるので、重要な構造の情報は真性応力の測定から得られる。本	
				論文では、薄膜成長に関する今日の解釈の徹底的な議論を提示し、真性	
				応力と関連する原子のメカ	
23	The origins of stress	Doljack, F.A.;	Thin Solid Films, v	研磨したSi基板上に蒸着させた多結晶Niの薄膜内の真性応力を、光学干	
	in thin nickel films	Hoffman, R.W.	12, n 1, Sept.	渉法による基板のひずみから測定した。試料を基板から剥がし、膜の厚さ	
			1972, p 71-4	が2000[]程度なので650[kV]顕微鏡を用いてミクロ構造を直接観測し	
				た。膜厚のfunctionとして、膜の瞬間の応力は、より高い基板温度におけ	
				る最初の500~1000[]の膜成長のときの圧縮応力の成長を除いて一定	
				じめるとわかうに。観測されにtensionの入ささは、U Cの1.5 X	
24	Intrinsic stress	Sheldon	Journal of Applied	がでは、いいでは、しても、膵成長の間には、酸焼する自同十の全体にトップ	
L.	island coalescence	B.W.; Lau	Physics, v 90. n	引張の真性応力が生じる。CVDで形成されたダイアモンドの薄膜での宝	ľ
	and surface	K.H.A.;	10, Nov 15, 2001. p	験結果と、比較的簡単なモデルを比較対照することで、これらの合体に	
	roughness during the	Rajamani, A.	5097	よって生じる応力を現実的に解釈することで、表面粗さに関連した効果を	
	growth of			説明できることが証明できる。まず、膜成長の初期段階における曲率測	
	polycrystalline films			定を解釈することで、表面粗さを説明できる。また、初期の島合体に続く	
				成長段階中に、結晶粒界形成によって引張応力が生じることが実験から	
				示される。この見解は、既に歪んだ結晶格子に向かっての"定	
25	Intrinsic stress upon	Wedler, G.;	Surface Science, v	Si(001)の上のGeの成長はStranski Krastanovモードで進むことはよく知ら	
	Stranski-Krastanov	Walz, J.; Heeiedel T.	402-404, 15 May	れている。すなわち、3次元の島("hut"と巨視的なcluster)か3~4MLの厚 さの仮の形状の屋のまでに物始するのである。そこで、古河際において	
	GIOWIN OF GE ON	Chilla E ·	1996, p 290-4	CONDO形状の層の衣面に凝縮するのでのる。そこで、平研丸にのいて、 3Dの皂がpercolateする暗厚までCo/Si/001)の直性広力のリアルタイム計	
	31(001)	Koch R		3000円//percolatey る 戻厚 & CGe/3(001)の 具 圧応/)の ゲアアダイム計 測を 行った	
		Roon, R.		緩和によって分類される3つの膜成長の段階を決めることができた。(1)仮	
				Ølayer-by-layer	
26	Compressive stress	Koch, R. ;	Physical Review	島、network、channelの段階を経て連続膜に至る、多結晶膜の成長の	
	in polycrystalline	Dongzhi Hu;	Letters, v 94, n 14,	Volmer-Werberモードは、最初の3つの段階の間に圧縮と引張が交互に	
	Volmer-Weber films	Das, A.K.	15 April 2005, p	現れるというように応力が複雑な振る舞いをすることでよく知られてい	
			146101/1-4	る。最近、心刀の発生と緩和の可逆性を説明する、新しい2つの圧縮心刀	
				のアルースムが提唱されている。 平調又にのいて、 これら2 フのアルース んが圧縮広力の成長の役割をほとんど思たさず、 それが良の今体の前の	
				日際での毛管効果によるものであることを明らかにする	
27	Amorphous thin-film	Raible M ·	Furophysics	アモルファスのZrAICuの薄膜の成長に関する実験結果と 最小(極小)非	
-	growth: theory	Mayr, S.G.;	Letters, v 50, n 1,	線形stochastic deposition equationから予測される表面形状の(動)力学	
	compared with	Linz, S.J.;	1 April 2000, p 61-	を解析し、比較した。本研究のkey pointは、i)growth equationを論じる係	
	experiment	Moske, M.;	7	数を見積もる 手順 ii)correlation lengthと表面粗さの時間発展の詳細な解	
1		Hanggi, P.;		析と解釈 である。この結果は、deposition equationの、アモルファスの成	l .
<u> </u>		Samwer, K.		長の過程を研究するためのツールとしての利用価値を裏付けている。	ļ
28	Surface phase	Safarik, D.J.;	Journal of	1次元での有限な見本の長さを特に考慮して、揮発性・不揮発性の固体表	
	transformation	wullins, C.B.	v 117 n 17 1 Nov	国での相転移の割力子のモナルを従系9る。核生成が試料学体に渡っ アランダムで均質に生じる不堪発性の対料でけ、実面の相恋かの運動が	
	deometrical model		2002. p 8110-23	ほくなることが、見本の厚さの減心として予測される この減速は 志面の	
	for thin films of		2002, p 0110-20	変形に寄与する結晶粒の数と、試料の厚さが薄くなるにつれて次第によ	
	nonvolatile and			り二次元的に成長する各結晶粒の幾何に由来する。昇華は、凝縮した結	
	volatile solids			晶粒のsubsurfaceと境界面の相対的な衝突速度を増加させ、それ故に厚	
				さの影響なしで(不揮発性の材料と比べて)表面の相	
29	Atomic dynamics in	Vauth, S.;	Applied Physics	MDシミュレーションを用いた、 ガラス遷移温度以下での金属ガラスの薄	
	molecular dynamics	Mayr, S.G.	Letters, v 86, n 6,	膜のatomic dynamicsの結果を明かす。異なる組成比のCuTi薄膜を、液	
	simulations of glassy		7 Feb. 2005, p	体からアモルファスの状態に急冷することで作った。アモルファスの表面と	
	CuTi thin films		61913-1-3	試料のハルクの内部のatomic dynamicsを、拡散定数とjump length分布	
				で訂昇することで圧重的に比較した。 我々は、原子のtypeにようて異な るが勤まれてずたの、路線した、武いは単独の数字の結果に差早にた。素	
				るJIAIXハリースムい、麻畑しに、乳りは早畑の私士の行性に有日した。史 に 単原子の実例を 異なる種類のatomic dysomicsに対	
30	Breakdown of the	Streng C ·	Applied Physics	ic、モホリの天内を、英なる 推想の atomic uynamics に Xi stochastic(確率論的) rate equation による 薄膜成長の記述における 小	
Ĭ	approximations of	Samwer, K.:	Letters, v 81, n 27	さな摂動の概算の妥当性の範囲を解析した、上の膜層の極限における数	
	small perturbations	Mayr, S.G.	Dec 30 2003, 2002,	学的記述の破綻に関して、実験とシミュレーションの詳細な比較によって	
	in continuum		p 5135-5137	調べた。ZrAICu膜の厚さが500[nm]以上で発生する、高い膜厚の極限で	
1	modeling of			の記述の崩壊を観察した。	
	amorphous thin film				
1	growth	1			1

Table 2-3Data base of papers on intrinsic stress 3

					material.depositio
No.	Title	Authers	Source, Year	Abstract	n process
31	Molecular dynamics	Fang, C.C. ;	Journal of Vacuum	薄膜形成プロセスに関する分子動力学モデルの提示。このモデルでは、	
	modeling of	Prasad, V.;	Science &	Lennard-JonesとMoliereのポテンシャル関数を用いてそれぞれの各原子	
	microstructure and	Jones, F.	Technology A	間やイオンと原子の間の相互作用を記述し、原子間の原子力を決めた。	
	stresses in sputter-		(Vacuum,	3次の不均一時間ステップintegration schemeをもちいて薄膜と基板内の	
	deposited thin films		Surfaces, and	各粒子の新しい位置と速度を計算した。不均一な時間間隔を用いること	
			Films), v 11, n 5,	で、かなりCPU時間を節約することができた。力のevolutionを、隣接する	
			Sept Oct. 1993, p	粒子のlistがわかっていることを必要とする短いcutoffの範囲で実行	
32	Effect of ion	Mavr. S.G. (l.	Physical Review B	薄膜に作用する応力の、イオンビームの照射によって誘起された変化	
	bombardment on	Phys. Inst.,	(Condensed	は、薄膜の熱力学的な相と、膜のミクロ構造と形状の成長と関係してい	
	stress in thin metal	Georg-	Matter and	る。実験とMDシミュレーションを組み合わせて、アモルファス、ナノ結晶、	
	films	August Univ.	Materials	柱状多結晶、単結晶の薄膜の残留応力の変化を起こすメカニズムを調	
		Gottingen,	Physics), v 68, n	べた。 Thermal spike(極大点?)での局所的な粘性の緩和、 すなわち、	
		Germany;);	21, 1 Dec. 2003, p	collision cascade(衝突の滝)における液状の領域はあらゆる応力の変化	
		Averback,	214105-1-10	のもととなっているが、それは種類の異なる金属膜の、様々な応力の状態	
22	Fueluties of this film	R.S.	Nuelees	を引き起こす。	
33	Evolution of thin-film	Mayr, S.G.	Nuclear	1 オノヒーム照射中の薄膜の形状の成長を、実験CMDのシミュレーショ ンの組み合わせによって調査した。マエルファファナノは早の薄膜の実面	
	morphologies in	Dept. of Mat.	Methode in	ノの組み合わせにようし詞直した。デモルノアスとリノ編曲の海峡の衣画 和さ 広力 domainの成長について調べた 宇幹に上 Uradiation induced	
	heam bombardment	Sui anu Engineering	Physics Research	組と、心力、domanion成長について調べた。実験によりradiation-induced 粘性液のモデルの正しさが示された。実験から推測される radiation-	
	beam bombarament	Univ Illinois	Section B: Beam	induced粘性の係数は、特定の材料に対しても、放射粒子に対しても反応	
		at Urbana-	Interactions with	しなかった。MDを用いたコンピュータシミュレーションによって、イオンの	
		Champaign);	Materials and	軌跡上のナノメートルサイズの領域の局所的な融解によって流れが生じ	
	1	Ashkenazy,	Atoms, v 212, n 1-	ることもあ	
	1	Y.; Averback,	4, December,		
		R.S.	2003, p 246-252		
34	Growth-mode-	Koch, R. (Inst.	Physical Review B	薄膜の成長と形態は、その真性応力と直接関係している。このsystemに	銀の薄膜
	specific intrinsic	fur	(Condensed	おいて、mica(001)の3つの異なる Volmer-Werberタイプの成長モードでの	
	stress of thin silver	Experimental	Matter), v 44, n 7,	銀は、非常に感度の高いカンチレバーを用いたリアルタイムの真性応力	
	nims	pnys., Freie	15 Aug. 1991, p	洲正によっく明確に区別された。 腰成長の銀の薄膜において、単結晶の	
		Univ., Berlin,	3369-72	uomain wall(領域堂)の形成による応力の奇与が観測された。	
	1	Winau D			
		Fuhrmann A			
		Rieder, K.H.			
35	Intrinsic stress	Rajamani, A.	Applied Physics	molecular beam epitaxyで形成されたAIN薄膜の真性応力を、曲率測定に	AIN薄膜:
	evolution in	(Div. of Eng.,	Letters, v 79, n 23,	よって調べた。応力成長のリアルタイム計測実験によって、ここの島が合	molecular beam
	aluminum nitride thin	Brown Univ.,	3 Dec. 2001, p	体して1つの連続膜になる時に引張応力が発生し、それは合体後しばらく	epitaxy
	films and the	Providence,	3776-8	続く。圧縮応力も、合体の前後で発生する。中間的なアニールの段階を導	
	influence of multistep	RI, USA);		入することは一見すると合体後の引張応力を減少させるようだが、実際	
	processing	Beresford, R.;		には、最終的な圧縮応力を増加させている。	
26	Intrincia at-read of	Sheldon, B.W.	Applied Physics A		
30	ultrathin enitoxial	(Paul-Drudo	Materiale Science	xx尿丁層カの厚さの範囲での、utratnin epitaxiai filmの生成中に成長す ス応力について、会まで研究されている玄にはつつのを/如られた喋喋	
	films	Inst. fur	Processing) v	長のモードがある。Stranski-Krastanow mode	
		Festkoerperel	A69, n 5, Nov.	[Ge/Si(001),Ge/Si(111),Ag/Si(111)], Frank-Van der Merwe mode	
	1	ektronik,	1999, p 529-36	[Fe/MgO(001)] and Volmer-Weber mode [Ag/mica(001),Cu/mica(001)] C	
	1	Berlin,		ある。実験結果から、単一原子層内の応	
		Germany)			
37	The kinetics of	Mayr, S.G. (I.	Journal of Applied	Zr65Al7.5Cu27.5の金属ガラスの薄膜の構造緩和のkineticsを、抵抗測定	
	internal structural	Phys. Inst.	Physics, v 97, n 9,	を用いて観測した。作成中の試料は、アニールされてion treatmentされる	
	relaxation of metallic	Georg-	1 May 2005, p	とmatastableな平衡占成しけco-occuring表面のsmoothingと密接に開	
	glasses probed with	-		C、metastablea平衡点式/maco-occumg夜面のsmoothingC出致IC病	
		August-Univ.	96103-1-3	と、metastableな中間点気が14cG-occurringを置いるmotioningと出身に演 わる安定状態の方へ不可逆的に緩和する。逆に、拡張された指数的時間	
	ion beams and	August-Univ. Gottingen,	96103-1-3	ここにはなるのです。 わる安定状態の方へ不可逆的に緩和する。逆に、拡張された指数的時間 依存の後に熱的に緩和することが分かっている小さな構造の乱れに対す	
	ion beams and resistivity	August-Univ. Gottingen, Germany)	96103-1-3	Cimetastable ar By Max が Abo Document (All Domouning Call Domoun	
38	ion beams and resistivity measurements Reversible stress	August-Univ. Gottingen, Germany) Friesen C	96103-1-3	C. Intelastable a Tagin 気が1 るいこのに加引な回う500c0 Intg Kall の500 ct 100 ct 300 ct 3	
38	ion beams and resistivity measurements Reversible stress relaxation during	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of	96103-1-3 Source: Physical Review Letters y	Cimetastable a Tagimax Tagim	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence	August - Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. &	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept.	Crimetastable a Tagimax Tagio Succing Kail Oshooting Kail Oshoot	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1-	Crimetastable a TBM 気が描いていない前気を通り高いのいからというによう わる安定状態の方へ不可逆的に緩和する。とが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohlrausch指数は、緩和モードからの連 リアルタイム応力測定から、多結晶の薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な あ力緩和と類似している。更に、depositionの10分の1以下の単層が、	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4	Crimetastable a Tag Max Window Cook Uning Kall OS Moduning Charles La Mar La Max Max Max Max Max Max Max Max Max Ma	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA);	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4	Critetastable a Fight String value Sondorting value Sondort value	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4	Crimetastable a Fugimativitation Socialing Kall osmootning Leiber Jay わる 安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から、多結晶Cu薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 [[GPa] Oorder Onisstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V.	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4	Crimetastable a Fight String value Sondorting value Sondort value Sondorting value Sondor	
38 39	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V.	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4 Journal of the	Crimetatable a Fight Strate Occuming Call Osmootning Call Os	
38 39	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. (Dept. of	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and	Crimetatableでは外により、 わる安定状態の方へ不可逆的に緩和する。逆に、拡張された指数的時間 依存の後に熱的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 1(GPa)のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1(μm)程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する,成膜中或	
38 39	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. (Dept. of Mater. Sci. & Eng. MIT, Cambridge, MA, USA); Thompson, C.V.	96103-1-3 Source: Physical Review Letters, v 89, n12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids,	Crimetatable (中国) (本) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
38 39	ion beams and resistivity measurements Reversible stress relaxation during precalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. (Dept. of Mater. Sci. & Eng., MIT, Cambridge,	96103-1-3 Source: Physical Review Letters, v 89, n12, 16 Sept. 2002, p 126103/1- 4 Journal of the Mechanics and Physics of Solids, v 44, n5, May 1906 p 657 72	Crimetatableを一販売数が描述つらない間々に回らかけない間々に回らかけない間々に わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohlrausch指数は、緩和モードからの連 リアルタム人応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の以下の単層が、 [GPa]ののrderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1[µm]程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成膜後のアニール中の結晶粒の成長は、これらのミクロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 サームの体長部の成長を加い触り、たり、グロサームが目的です。	
38	ion beams and resistivity measurements Reversible stress relaxation during precalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Chopt. of Mater. Sci. & Eng., MIT, Cambridge, MA LISA:	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73	Crimetatableを一般無数が描述つるなが開く組みが的な明点とは交に構成 わる安定状態の方へ不可逆的に緩和する。逆に、拡張された指数的時間 依存の後に熟的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるシールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 ([GPa] Oorder Ooinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1[µm]程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶力位が分布する方法などに強く依存する,成膜中或 いは成態後のアニール中の結晶粒の成長は、これらのミクロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 は、のお晶粒の成長を抑制したり、促進したりする。応力が結晶粒を何と	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel & Carel &	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73	Crimetatableでは外により、 わる安定状態の方へ不可逆的に緩和する。、逆に、拡張された指数的時間 依存の後に熟的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から。多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が 1(GPa)のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1[µm]程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 和径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成膜後のアニール中の結晶粒の成長は、これらの5クロ構造の特 性、すなわち腹の機械的特性を決める際に支配的な役割を果たす。応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Thompson, C.V. Chompson, C.V. Chompson, C.V. Cambridge, Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R.	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73	Crimetatableを可能感知することない間をはの5modningとはなど見て、 わる安定状態の方へ不可逆的に緩和する。、逆に、拡張された指数的時間 依存の後に熱的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す 3、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 1(GPa)のorderのinstantaneous stressを引き起こすことも観測された。合 体和・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1(µm)程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成態後のアニール中の結晶粒の成長は、これらのジロ構造の特 性、すなわち腹隙機械的特性を決める際に支配的な役割を果たす。応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する、結晶 粒の成長は、弾性的に等方性の材料においても異方性の材料において	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Thompson, C.V. Cambridge, MA, USA); Carel, R. Chason, F.:	96103-1-3 Source: Physical Review Letters, v 89, n12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73	Cr. metastables 一般無数が痛ないるななが見な話のあいない思くに対定しまた。 わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す 3、温度のKohirausch指数は、緩和モードからの連 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 (JGPa]のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1(µm)程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成勝後のアニール中の結晶粒の成長は、これらのシクI 構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶 粒の成長は、弾性的に等方性の材料においても見方性の材料において も、応力を緩和するメカニズムとして働き、塑性を促進する。	
38 39 40	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films Origin of compressive residual	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Thompson, C.V. Thompson, C.V. Capet. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R. Chason, E.; Sheldon.	96103-1-3 Source: Physical Review Letters, v 89, n12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73 Physical Review Letters, v 88, n 15.	Cr. metastable a 一線流気が高いつなな加速な高のあいな加速した。 わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した、急激に減少す 3、温度のKohlrausch指数は、緩和モードからの連 リアルタムたの力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 1[GPa]のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成膜後のアニール中の結晶粒の成長は、これらのシクロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶 粒の成長は、弾性的に等方性の材料においても異方性の材料において も、応力を緩和するメカニズムとして働き、塑性を促進する。 蒸気からの原子のdepositionによって引き起こされる表面の化学ボテン シャルにおいて駆動力が増加するような薄膜成長の最中の圧縮応力の	
38 39 40	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films Origin of compressive residual stress in	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Thompson, C.V. Chopt. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R. Chason, E.; Sheldon, B.W.; Freund,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73 Physical Review Letters, v 88, n 15, 15 April 2002, p	Crimetatableを一時、無効するいらない間を知らかれない間をにしなれた開 わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す るのなど、熱的に緩和することが分かっている小さな構造の乱れに対す るのなど、熱のに緩和することが分かっている小さな構造の乱れに対す る、温度のKohirausch指数は、緩和モードからの連 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している、更に、depositionの10分の1以下の単層が、 [GPa]のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1[µm]程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成膜後のアニール中の結晶粒の成長は、これらのミクロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たず、応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶 和の成長は、弾性的に等方性の材料においても異方性の材料において も、応力を緩和するメカニズムとして働き、塑性を促進する。 蒸気からの原子のdepositionによって引き起こされる表面の化学ポテン シャルにおいて駆動力が増加するような薄膜成長の最中の圧縮応力の 発生モデルを提示する、表面の化学ポテンシャルの増加は、原子を結晶	
38 39 40	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films Origin of compressive residual stress in polycrystalline thin	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Chopet. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R. Chason, E.; Sheldon, B.W.; Freund, L.B.; Floro,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1- 4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73 Physical Review Letters, v 88, n 15, 15 April 2002, p 156103/1-4	Cr. metastables (三) (加速、数) (福立のとない間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm間をは)の500cm目をは)の500cm目的500cm 500cm100cm100cm10500cm10500cm10500cm100cm1	
38 39 40	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films Origin of compressive residual stress in polycrystalline thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. Thompson, C.V. Thompson, C.V. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R. Chason, E.; Sheldon, B.W.; Freund, L.B.; Floro, J.A.; Hearne,	96103-1-3 Source: Physical Review Letters, v 89, n 12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73 Physical Review Letters, v 88, n 15, 15 April 2002, p 156103/1-4	Crimetatableを一脚点数小電ンのとなが同な組の5modningとにはなどに開 わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの運 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 [GPa]のorderのinstantaneous stressを引き起こすことも観測された。合 体前・合体後どちらの段階においても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1(µm)程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成態後のアニール中の結晶粒の成長は、これらのジロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 は、この結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶 粒の成長は、弾性的に等方性の材料においても異方性の材料において を、応力を緩和するメカニズムとして働き、塑性を促進する。 蒸気からの原子のdepositionによっで引き起こされる表面の化学ボテン シャルにおいて駆動力が増加するような薄膜成長の最中の圧縮応力の 発生モデルを提示する。表面の化学ボテンシャルの増加は、原子を結晶 粒界の中へ流入させ、膜の圧縮応力を生じさせる。本研究で、kinetic equationを発展させて、応力の成長に成長パラメータへの依存性を記述し	
38	ion beams and resistivity measurements Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth Stress and grain growth in thin films Origin of compressive residual stress in polycrystalline thin films	August-Univ. Gottingen, Germany) Friesen, C. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Thompson, C.V. (Dept. of Mater. Sci. & Eng., MIT, Cambridge, MA, USA); Carel, R. Chason, E.; Sheldon, B.W.; Freund, L.B.; Floro, J.A.; Hearne, S.J.	96103-1-3 Source: Physical Review Letters, v 89, n12, 16 Sept. 2002, p 126103/1-4 Journal of the Mechanics and Physics of Solids, v 44, n 5, May 1996, p 657-73 Physical Review Letters, v 88, n 15, 15 April 2002, p 156103/1-4	Cr. metastables 一般無数が痛びつらない間々に回う的ない間々には分にして、 わる安定状態の方へ不可逆的に緩和することが分かっている小さな構造の乱れに対す る反応を調べるツールとして、イオンビームを使用した。急激に減少す る、温度のKohirausch指数は、緩和モードからの連 リアルタイム応力測定から、多結晶心薄膜がVolmer-Weber成長する間 に増加する、島の合体前の圧縮応力の大部分が可逆的に緩和すること が観測された。この現象は、以前に合体後のregimeで観測された可逆的な 応力緩和と類似している。更に、depositionの10分の1以下の単層が、 I(GPa]のorderのinstantaneous stressを引き起こすことも観測された。 合体前・合体後どちらの段階にあいても、応力の変化は、depositionの最中 と後のadatomの総数の変化によって説明できる。 厚さ1(µm)程度の多結晶薄膜の機械的特性は、結晶粒の幾何学や結晶 粒径、結晶粒の結晶方位が分布する方法などに強く依存する。成膜中或 いは成態後のアニール中の結晶粒の成長は、これらのジロ構造の特 性、すなわち膜の機械的特性を決める際に支配的な役割を果たす。応力 はこの結晶粒の成長を抑制したり、促進したりする。応力が結晶粒を促 進する場合、応力は結晶粒が成長する間、構造の成長を促進する。結晶 粒の成長は、弾性的に等方性の材料においても気方性の材料において も、応力を緩和するメカニズムとして働き、塑性を促進する。 蒸気からの原子のdepositionによって引き起こされる表面の化学ボテン シャルにおいて駆動力が増加するような薄膜成長の最中の圧縮応力の 発生モデルを提示する。表面の化学ボテンシャルの増加は、原子を結晶 粒界の中へ流入させ、膜の圧極応力を生じさせる。本研究で、vinetic equationを発展させて、応力の成長と成長パラメータへの依存性を記述し た。このモデルを用いて、成長が終了したときの緩和の測定と、成長速度	

Table 2-4Data base of papers on intrinsic stress 4

第3章 分子動力学による表面・界面エネルギ/

応力の算出

3.1 計算モデル

本節では,表面・界面エネルギ/応力を算出するためにどのようなモデルを用いて,どのような手法で計算したかを述べる.

3.1.1 分子動力学法

分子動力学法では,原子間相互作用を特徴づける経験的ポテンシャルを定義 することで,各原子に働く力を評価する.各原子に古典的力学法則を適用し, ニュートンの運動方程式を数値的に解く.例えば原子数をNとし,N原子の初 期条件を規定すれば,6N次元の位相空間上にただ一つの軌跡が定まり,各原子 の時間発展を決定論的に追従できる.この時,各時間ごとに系の力学量の瞬間 値が定義できる.瞬間値の長時間平均が位相空間平均に等しいというエルゴー ド仮説を用いれば,マクロな物理量を得ることができる.実際のシミュレーシ ョンアルゴリズムは,以下に示すように,初期構造作成後,2~5のサイクルを 繰り返すことになる.

- 1. 初期条件作成
- 周期境界条件に基づき,原子間力を計算する原子対を算出 (Book-keeping法)
- 3. ポテンシャルから原子間力を算出
- 4. Verlet 法により, Δt 後の原子位置・速度を評価
- 5. 物理量の算出
- 6. 2. に戻る

3.1.2 分子動力学ポテンシャル

本研究では,分子動力学計算のポテンシャルとして,16種の金属元素の単体 及びそれらの合金系の計算のできる Generalized Embedded-Atom-Method ポ テンシャル(以下,GEAMポテンシャル)を用いた.このGEAMポテンシャルは, 格子定数や,弾性定数,欠陥生成エネルギ,凝集エネルギ,融解熱といった物 性値とよく一致する.

GEAM ポテンシャルの関数形は以下のようになっている. 系の全エネルギ*E*は

$$E = \frac{1}{2} \sum_{i,j,i\neq j} \phi_{ij}(r_{ij}) + \sum_{i} F_i(\rho_i)$$
(3. 1)

と表される.

ここで,

 ϕ_{ii} :距離 r_{ii} 離れた原子i, j間の二体ポテンシャル

 $F_i: 原子iを,電子密度<math>\rho_i$ の場所に挿入するための埋め込み関数であり,電子密度 ρ_i は

$$\rho_i = \sum_{j,j\neq i} f(r_{ij}) \tag{3. 2}$$

とする.但し,

 $f_j(r_{ij}): 原子 i の位置における , 距離<math>r_{ij}$ 離れた位置の原子 j によって生じ る電子密度

である.

EAM ポテンシャルを合金系に対しても適用するためには,ポテンシャルを規格化し,統一された cutoff 関数を用いる必要がある.その条件を達成するために,次のような一般化二体ポテンシャル $\phi(r)$ を用いる.

$$\phi(r) = \frac{A \cdot \exp\left[-\alpha \left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \kappa\right)^{20}} - \frac{B \cdot \exp\left[-\beta \left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \lambda\right)^{20}}$$
(3. 3)

各パラメータは以下の通りである.

r_e:最近接原子間の equilibrium spacing

 A, B, α, β : adjustable parameter

 κ, λ : cut off に関する additional parameter

式(3.2)の電子密度関数 f(r)は,式(3.3)の引力項と同様の形で,同一のパラメ ータ β,λを用いて,

$$f(r) = \frac{f_e \cdot \exp\left[-\beta\left(\frac{r}{r_e} - 1\right)\right]}{1 + \left(\frac{r}{r_e} - \lambda\right)^{20}}$$
(3. 4)

と表される.

また,合金系において,異なる原子種*a*と*b*の間の二体ポテンシャルは,同種の原子間の二体ポテンシャルと電子密度関数を用いて,

$$\phi^{ab}(r) = \frac{1}{2} \left(\frac{f^{b}(r)}{f^{a}(r)} \phi^{aa}(r) + \frac{f^{a}(r)}{f^{b}(r)} \phi^{bb}(r) \right)$$
(3. 5)

と表現される.

埋め込み関数 $F(\rho)$ を, 広範囲の電子密度領域でうまく作用させるには, 3 つの異なる電子密度の範囲で場合分けする必要がある. すなわち,

$$\rho < \rho_{\rm n}, \rho_{\rm n} \le \rho < \rho_{\rm o}, \rho_{\rm o} \le \rho \tag{3.6}$$

の3つの場合で,各パラメータは, ρ_{e} を平衡電子密度として,

$$\rho_{\rm n} = 0.85 \rho_{\rm e}, \rho_{\rm o} = 1.15 \rho_{\rm e} \tag{3.7}$$

と設定する.

以上の3 つの領域の各境界で埋め込み関数の値と勾配が滑らかにつながるよう

に,埋め込み関数は以下の3通りに記述される.

$$F(\rho) = \sum_{i=0}^{3} F_{ni} \left(\frac{\rho}{\rho_{n}} - 1 \right)^{i}, \ \rho < \rho_{n}, \rho_{n} = 0.85\rho_{e}$$
(3.8)

$$F(\rho) = \sum_{i=0}^{3} F_{i} \left(\frac{\rho}{\rho_{e}} - 1\right)^{i}, \ \rho_{n} \le \rho < \rho_{o}, \ \rho_{o} = 1.15\rho_{e}$$
(3. 9)

$$F(\rho) = F_{\rm e} \left[1 - \ln \left(\frac{\rho}{\rho_{\rm e}} \right)^{\eta} \right] \cdot \left(\frac{\rho}{\rho_{\rm e}} \right)^{\eta}, \, \rho_{\rm o} \le \rho$$
(3. 10)

以上が GEAM ポテンシャルの関数形である.

上記の諸式に以下のパラメータを代入することで,各原子のポテンシャルエネ ルギを求めることができる.

	Cu	Ag	Au	Ni	Pd	Pt	Al	РЬ
r _e	2.556162	2.891814	2.885034	2.488746	2.750897	2.771916	2.886166	3.499723
f_c	1.554485	1.106232	1.529021	2.007018	1.595417	2.336509	1.392302	0.647872
ρe	22.150141	15.539255	21.319637	27.984706	22.770550	34.108882	20.226537	8.906840
α	7.669911	7.944536	8.086176	8.029633	7.605017	7.079952	6.942419	8.468412
β	4.090619	4.237086	4.312627	4.282471	4.056009	3.775974	3.702623	4.516486
A	0.327584	0.266074	0.230728	0.439664	0.385412	0.449644	0.251519	0.134878
В	0.468735	0.386272	0.336695	0.632771	0.545121	0.593713	0.313394	0.203093
ĸ	0.431307	0.425351	0.420755	0.413436	0.425578	0.413484	0.395132	0.425877
λ	0.86214	0.850703	0.841511	0.826873	0.851156	0.826967	0.790264	0.851753
P _{n0}	-2.176490	-1.729619	-2.930281	-2.693996	-2.320473	-4.099542	-2.806/83	-1.419644
r _{n1}	-0.140035	-0.221025	-0.554054	-0.066073	-0.421265	-0.754764	-0.2/61/3	-0.228622
P _{n2}	0.285621	0.541558	1.489437	0.170482	0.966525	1./66503	0.893409	0.630069
r _{n3}	-1./50834	-0.96/036	-0.886809	-2.45/442	-0.932685	-1.5/82/4	-1.63/201	-0.560952
r _o F	-2.19	-1.75	-2.98	-2.70	-2.50	-4.17	-2.85	-1.44
F	0 702001	0 083067	2 283863	0.282257	1 066273	3 474733	0 020508	0 021040
F.	0.702331	0.530907	2.283803	0.102870	1.306717	3.4/4/33	0.525308	0.321043
13	0.021150	1 149461	1 286960	0.509860	1 300758	1 303400	0.779208	1 172361
F	-2 191675	-1 751274	-2.981365	-2 700493	-2.362609	-4 174332	-2.829437	-1 440494
••	2.151075	1.151211	2.701505	2.700125	2.502005	1.171552	2.025 157	
	Fe	Mo	Ta	w	Mg	Co	Ti	Zr
<i>r.</i>	Fe 2.481987	Mo 2.728100	Ta 2.860082	W 2.740840	Mg 3.196291	Co 2.505979	Ti 2.933872	Zr 3.199978
r _e fe	Fe 2.481987 1.885957	Mo 2.728100 2.723710	Ta 2.860082 3.086341	W 2.740840 3.487340	Mg 3.196291 0.544323	Co 2.505979 1.975299	Ti 2.933872 1.863200	Zr 3.199978 2.230909
r_e f_e ρ_e	Fe 2.481987 1.885957 20.041463	Mo 2.728100 2.723710 29.354065	Ta 2.860082 3.086341 33.787168	W 2.740840 3.487340 37.234847	Mg 3.196291 0.544323 7.132600	Co 2.505979 1.975299 27.206789	Ti 2.933872 1.863200 25.565138	Zr 3.199978 2.230909 30.879991
r_e f_e ρ_e α	Fe 2.481987 1.885957 20.041463 9.818270	Mo 2.728100 2.723710 29.354065 8.393531	Ta 2.860082 3.086341 33.787168 8.489528	W 2.740840 3.487340 37.234847 8.900114	Mg 3.196291 0.544323 7.132600 10.228708	Co 2.505979 1.975299 27.206789 8.679625	Ti 2.933872 1.863200 25.565138 8.775431	Zr 3.199978 2.230909 30.879991 8.559190
r_e f_e ρ_e α β	Fe 2.481987 1.885957 20.041463 9.818270 5.236411	Mo 2.728100 2.723710 29.354065 8.393531 4.476550	Ta 2.860082 3.086341 33.787168 8.489528 4.527748	W 2.740840 3.487340 37.234847 8.900114 4.746728	Mg 3.196291 0.544323 7.132600 10.228708 5.455311	Co 2.505979 1.975299 27.206789 8.679625 4.629134	Ti 2.933872 1.863200 25.565138 8.775431 4.680230	Zr 3.199978 2.230909 30.879991 8.559190 4.564902
r_e f_e ρ_e α β A	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667
r_e f_e ρ_e β A B	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054
r_e f_e ρ_e α β A B κ	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5
r _e f _e β A B κ λ	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0
$r_e f_e \rho_e \alpha \beta A B \kappa \lambda F_{v0}$	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.333954 -5.103845	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793
$r_e f_e \rho_a \beta A B \kappa \lambda F_{al} F_{al}$	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 -0.178812	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.333954 -5.103845 -0.405524	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 -0.148818	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 -0.293129
$r_e f_e \rho_e \alpha \beta A B \kappa \lambda F_{e2}$	Fe 2.4\$1987 1.8\$5957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450	Ta 2.860082 3.086341 33.787168 4.89528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 0.50250	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.733381 0.733381	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 0.990148
r_{e} f_{e} ρ_{e} β A B κ λ F_{e0} F_{e1} F_{e2}	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.282322	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.133650	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057 -4.432406	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 0.900	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.733381 -1.589003 2.56	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516
$\frac{r_e}{f_e}\rho_{\alpha} \beta A B \kappa \lambda F_{F_{\alpha}}^{B} F_{F_{\alpha}}^{B}$	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.282322 -2.54 0	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.133650 -3.71 0	Ta 2.860082 3.086341 33.787168 8.459528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325 -5.14	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057 -4.432406 -4.96 0	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 -0.90 0	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.733381 -1.589003 -2.56 0	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732 -3.22 0	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516 -4.51 0
$\frac{r_e}{f_e} \rho_e \alpha \beta A B \kappa \lambda F_{r_e}^{0} F_{r_e}^{1} F_{r_e}^{0} F_{r_e}^{1} $	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.2823222 -2.54 0 0 0.200260	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.133650 -3.71 0 0.975874	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325 -5.14 0 1.640022	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057 -4.432406 -4.96 0 0.0661025	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 -0.90 0 0 0	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.73381 -1.589003 -2.56 0 0.705845	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732 -3.22 0 0.60557	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516 -4.51 0 0.026602
$r_e f_e \rho_a \beta A B \kappa \lambda F_{F_e}^{a0} F_{F_F}^{a1} F_{F_F}^{a0} F_{F_F}^{a1} F_{F_F}^{a0} F_{F_F}^{a1} F_{F_F}^{a1}$	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.282322 -2.54 0 0.200269 0.149770	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.133650 -3.71 0 0.875874 0.775222	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325 -5.14 0 1.640098 0.201375	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057 -4.432406 -4.96 0 0.661935 0.248147	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 -0.90 0 0.122838 0.326010	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.73381 -1.589003 -2.56 0 0.705845 0.687140	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732 -3.22 0 0.6085877 0.756710	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516 -4.51 0 0.928602 0.928602 0.928602
$\frac{r_{e}}{f_{e}}\rho_{\alpha} \beta A B \kappa \lambda F_{F_{e}}^{a} F_{F_{e}}^{$	Fe 2.4\$1987 1.8\$5957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.282322 -2.54 0 0.200269 -0.148770 0.200269	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.71 0 0.875874 0.776222 0.706272	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325 -5.14 0 1.640098 0.221375 0 8442	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 -0.148818 0.365057 -4.432406 -4.96 0 0.661935 0.348147 0.582714	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 -0.90 0 0.122838 -0.226010 0.41255	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.733381 -1.589003 -2.56 0 0.705845 -0.687140 0.6609	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732 -3.22 0 0.608587 -0.750710 0.55572	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516 -4.51 0 0.928602 -0.981870 0.958122
$r_{e} f_{e} \rho_{\alpha} \beta_{A} B_{\kappa} \lambda_{F} F_{e}^{00} F_{F}^{1} f_{2} f_{3}^{00} \eta_{F}$	Fe 2.481987 1.885957 20.041463 9.818270 5.236411 0.392811 0.646243 0.170306 0.340613 -2.534992 -0.059605 0.193065 -2.282322 -2.54 0 0.200269 -0.148770 0.391750 0.391750 2.534045	Mo 2.728100 2.723710 29.354065 8.393531 4.476550 0.708787 1.120373 0.137640 0.275280 -3.692913 -0.178812 0.380450 -3.133650 -3.71 0 0.875874 0.776222 0.790879 3.71092	Ta 2.860082 3.086341 33.787168 8.489528 4.527748 0.611679 1.032101 0.176977 0.353954 -5.103845 -0.405524 1.112997 -3.585325 -5.14 0 1.640098 0.221375 0.848843 5.141526	W 2.740840 3.487340 37.234847 8.900114 4.746728 0.882435 1.394592 0.139209 0.278417 -4.946281 0.148818 0.365057 -4.432406 -4.96 0 0.661935 0.348147 -0.582714 4.961206	Mg 3.196291 0.544323 7.132600 10.228708 5.455311 0.137518 0.225930 0.5 1.0 -0.896473 -0.044291 0.162232 -0.689950 -0.90 0 0.122838 -0.226010 0.431425 0.89702	Co 2.505979 1.975299 27.206789 8.679625 4.629134 0.421378 0.640107 0.5 1.0 -2.541799 -0.219415 0.733381 -1.589003 -2.56 0 0.705845 -0.687140 0.694608 2.558207	Ti 2.933872 1.863200 25.565138 8.775431 4.680230 0.373601 0.570968 0.5 1.0 -3.203773 -0.198262 0.683779 -2.321732 -3.22 0 0.608587 -0.750710 0.558572 -0.31276	Zr 3.199978 2.230909 30.879991 8.559190 4.564902 0.424667 0.640054 0.5 1.0 -4.485793 -0.293129 0.990148 -3.202516 -4.51 0 0.928602 -0.981870 0.597133 4.50005

Table 3-1Parameters for GEAM[25]

3.1.3 計算モデル

分子動力学において表面を定義するため, Fig. 3-1 に示すような, x, y 方向に は周期境界条件を課し, z 方向は自由境界とした薄膜モデルを用いる.上下2つ の表面が生成されるため,薄膜の厚みは,表面同士の干渉がないよう十分厚く(原 子4~5層分以上)する必要がある.

薄膜モデルでは $\sigma_{zz} = 0$ が成り立つ.このことは,平面応力状態が成立することを意味する.よって,表面系の定義は全て平面応力条件のもと行う.

Fig. 3-1 Schematic illustration of calculation models

表面エネルギ γ_s は,表面がない系(bulk),表面がある系のエネルギ E_{bulk} , E_{surf} と,表面積Aを用いて,

$$\gamma_s = \frac{E_{surf} - E_{bulk}}{2A} \tag{3. 11}$$

と定義される.

連続体の理論から,薄膜の表面応力f。は,系の平均圧力Pと膜厚tを用いて,

$$f_s = \frac{3}{4}Pt \tag{3. 12}$$

と表される.

一般に,格子定数の異なる2種類の結晶の界面には歪みが生じ,それにより 界面エネルギとは別の歪エネルギが系に加わってしまう.その影響を出来るだ け小さくするため,界面をモデリングする際には,2つの元素の格子定数の逆比 に近い整数比で単位格子を積み重ねる.

しかしながら,それでも歪みは理想的な0にはならないため,歪んだバルクのエネルギは,歪のないバルクのエネルギより僅かに大きくなる.これを E'_{bulk} とすると,2種類の金属 a と b の間の界面エネルギ γ_{ab} は,

$$\gamma_{ab} = \frac{E^{ab} - E^{\prime a}_{bulk} - E^{\prime b}_{bulk}}{A} - \gamma^a_s - \gamma^b_s$$
(3. 13)

と求まる. 界面応力は,式(3.12)のP,tに界面系での値を代入して求める.

3.1.4 計算条件

温度条件は,全ての系において 0[K]とした.時間ステップは,系の原子の総数や収束具合に合わせて,1step=1~10[fs]で計算した.

歪みのないバルクのエネルギ(凝集エネルギ)を求める際には,圧力 0[Pa]の NTP アンサンブルで,直方体を保った状態で計算した.

表面・界面系及び歪みのあるバルクのエネルギを求める際には,NVT アンサンブルで,圧力が収束するまで十分長い時間をとって計算した. また,cutoff距離は,どの原子でも第二近接までを含む7[]とした.

3.1.5 計算ソフト

本研究では,分子動力学計算ソフトとして,(㈱富士通製の Materials Explorer 3.0を用いた.本ソフトは,入力データの作成から MD 計算及び結果解析まで 全て Windows 上で実行可能で,原子配置や温度・圧力・体積などのリアルタイ ム表示や多彩な解析機能を備えており,GEAM を始めとする多くのポテンシャ ルやアンサンブル(NEV,NTV,NPH,NTP)が使用可能である.[26]

3.2 結果

前節で述べたシミュレーションより得られた物理量を元に,材料ごとに表面・界面特性値を計算し,分類した.

3.2.1 表面エネルギ・表面応力

次頁の Table 3-2 に,各材料の,本研究で得られた表面エネルギ(fcc と bcc に 関しては,各面方位の相加平均と標準偏差を併記),第一原理計算によって得ら れている表面エネルギ[27-29],実験によって得られている表面エネルギ[27,28, 30]を示す.

		surface	energy	[J/m ²]				surface	e energy	[J/m ²]
	surface		first -				surface		first -	È i
Material	orientation	result	principles	experiment		Material	orientation	result	principles	experiment
fcc						bcc				
	(100)	1.512					(100)	1.691		
	(110)	1.637					(110)	1.428		1
Cu	(111)	1.449	1.94			Fe	(111)	1.858		1
	Average	1.532		1.77		-	Average	1.659		
	Std. Dev.	0.096					Std. Dev.	0.217		
	(100)	1.904					(100)	2.474	3.52	
	(110)	1.360					(110)	2.151	3.14	
Ni	(111)	1.830				Мо	(111)	2.775		
	Average	1.698		2.24			Average	2.467		
	Std. Dev.	0.295					Std. Dev.	0.312		
	(100)	0.854					(100)	2.342		
	(110)	0.942					(110)	1.985		
AI	(111)	0.831	0.96			Та	(111)	2.576		
	Average	0.876		1.00			Average	2.301		
	Std. Dev.	0.059					Std. Dev.	0.298		
	(100)	0.493	1.21				(100)	2.976	5.54	
	(110)	1.107	1.27				(110)	2.574		
Ag	(111)	0.971	1.21		W ((111)	3.340			
-	Average	0.857		1.24			Average	2.963		
	Std. Dev.	0.322					Std. Dev.	0.383		
	(100)	1.126	1.42			hcp				
I .	(110)	1.205				Co	(1000)	1.974		
Au	(111)	1.040	1.25			_	(
	Average	1.124		1.54		Zr	(1000)	1.250		
	Std. Dev.	0.083					((,,,,,,))			
	((0 0)	. =	. =0			11	(1000)	1.2/3		
	(100)	1.703	1.79				(4000)	0.000		
D 1	(110)	1.831	2.35			IVIg	(1000)	0.369		
Pa	(111)	1.620	1.64	2.00						
	Average	1.718		2.00						
	Sta. Dev.	0.107								
	(100)	2.052	0.51							
	(100)	2.000	2.31							
	(110)	2.207	2.75							
	()	1.900	2.19	2.40						
	Average	2.075		2.49						
—	Stu. Dev.	0.122								
 	(100)	0 206								
	(100)	0.090								
Dh	(111)	0.432	0.5							
1 ^{FU}		0.004	0.5	0.60						
1	Std Dov	0.034		0.00						

Table 3-2Surface energy

first-principles:[27-29], experiment:[27, 28, 30]

Table3-2 より,本研究で得られた分子動力学(MD)計算による表面エネルギと 第一原理計算による表面エネルギ,MD計算による表面エネルギと実験値との 比較を plot してグラフ化した .グラフ中の直線は 縦軸の値=横軸の値 を表す.

Fig. 3-2 Comparison of surface energies calculated by MD and the first-principles method

Fig. 3-3 Comparison of surface energies calculated by MD and experiments

本研究の計算値は,第一原理計算値と実験値のどちらよりも 10~20%小さく はなったが,相関関係は強く,再現性は十分高いといえる. 次に, Table 3-3 に, 各材料の, 本研究で得られた表面応力(fcc と bcc に関しては, 各面方位の相加平均と標準偏差を併記)と, 第一原理計算によって得られている表面エネルギ[27, 28]を示す.

		surface str	ess f [J/m²]			surface str	ess f [J/m²]
	surface		first-		surface		first-
Material	orientation	result	nrinciples	Material	orientation	result	principles
fcc	0	result	printoipies	 bcc		result	printoipies
	(100)	0.988		 200	(100)	2.433	
	(110)	0.983			(110)	1.043	
Cu	(111)	0.240		 Fe	(111)	0.644	
0	Average	0.737			Average	1.373	
	Std. Dev.	0.431			Std. Dev.	0.939	
	(100)	1.378			(100)	4.156	
	(110)	1.397			(110)	0.757	
Ni	(111)	0.289		Мо	(111)	-0.116	
	Average	1.021			Average	1.599	
	Std. Dev.	0.634			Std. Dev.	2.257	
	(100)	0.541	1.01		(100)	2.492	
l	(110)	0.497	1.84	 -	(110)	1.600	
AI	(111)	-0.062	1.25	 Ia	(111)	1.029	
	Average	0.325			Average	1.707	
	Sta. Dev.	0.336			Std. Dev.	0.738	
	(100)	1.071	2.0		(100)	1 206	
	(100)	1.071	2.0		(100)	4.300	
٨٩	(110)	0.505		 14/	(110)	-0.826	
Ag		0.303		 vv		-0.820	
	Std Dev	0.007			Std Dev	2 799	
		0.014				2.100	
	(100)	1 705	4 56	 hcp			
	(100)	1.690		 Со	(1000)	0.983	
Au	(111)	1.725	2.77	 	(• • • • •)		
7.0	Average	1.707		 Zr	(1000)	1.674	
	Std. Dev.	0.018					
				Ti	(1000)	1.033	
	(100)	1.742	3.86				
	(110)	1.774	1.86	Mg	(1000)	0.314	
Pd	(111)	1.527					
	Average	1.681					
	Std. Dev.	0.134					
	(100)	2.550	8.1				
	(110)	2.849	5.08				
Pt	(111)	2.051	5.6				
	Average	2.484	ļ				
	Sta. Dev.	0.403		 			
	(100)	0.550					
	(100)	0.552					
Dh	(110)	-0.009	0.00				
		0.273	0.82				
	Std Dov	0.272					
	Stu. Dev.	0.201			<u> </u>		

Table 3-3Surface stress

Table3-3 より,本研究で得られた MD 計算による表面エネルギと第一原理計 算による表面エネルギ, MD 計算による表面エネルギと実験値との比較を plot してグラフ化した.グラフ中の直線は,縦軸の値=横軸の値 を表す.

Fig. 3-4 Comparison of surface stresses calculated by MD and the first-principles method

表面応力は,表面エネルギと比べて,第一原理計算結果とのばらつきが大き いことが分かる.実験値が得られていないことからも,表面応力に対する定量 的な判断は難しい.

以下に,第一原理計算と実験値を参照にしたデータ及び他のポテンシャルに よる計算結果の文献データを示す.

Element	surface	[J/m ²]																
		[0]	[27]a	[27]b	[28]a	[28]b	[28]c	[29]a	[29]b	[29]c	[29]d	[29]e	[31]	[12]	[30]	[32]	[33]	[34]
fcc																		
	(100)					1.29		1.93		1.28	1.65				1.28	1.29		1.651
	(110)							2.04		1.4	1.64				1.4			1.642
Cu	(111)					1.18		1.73	1.94	1.17	1.41				1.17	1.18		1.409
	· /												1.85					
	Expt.											1.77			1.79			1.77
	(100)					1.57									1.58	1.57		2 435
	(110)														1 73			2 384
Ni	(110)					1 4 4									1.70	1 4 4		2.001
	()												245		1.10			2.000
	Evot												2.40		2 38			2.24
	(100)														2.00			0.00
	(100)		0.01															0.90
	(110).<1-10>		0.91															0.969
۸I	(110).<001>		0.91		0.06												0.06	0.62
	(111)		0.30		0.50												0.30	0.02
			0.96															
	Evet																	1
	Expl.																	- 1
	(100)		1 1 2	0.7		0.7		1 20	1.21	0.71	1 22				0 705	0.7		1 271
	(100)		1.12	0.7		0.7		1.29	1.5	0.71	1.22				0.705	0.7		1.271
	(110)							4 40	1.26	0.77	4.07				0.77			4 000
Ag	(110)							1.42	1.4	0.77	1.27				0.77			1.222
Ŭ	(111)			0.00		0.00			1.21	0.00	4.00				0.00	0.00		4 007
	(111)			0.62		0.62		1.14	1.21	0.62	1.09		4.05	4.5	0.62	0.62		1.087
	-												1.25	1.5				
	Expt.											1.32			1.24			1.32
	(100)		1.42	0.92		0.92		1.69		0.92	1.08				0.918	0.92		1.084
	(110)		4.05	0.70	1.05	0.70		1.85		0.98	1.12				0.98		4.05	1.115
Au	(111)		1.25	0.79	1.25	0.79		1.48		0.79	0.89				0.79	0.79	1.25	0.886
																1.25		
	Expt.											1.54			1.5			1.54
	(100)		1.79					1.75	2.3	1.37	1.66				1.37			1.659
	(110):<1-10>		2.35						1.97									
	(1.1.0)							1.86	2.5	1.49	1.67				1.49			1.67
Pd	(110):<001>		2.35						2.7									
	(111)		1.99					1.57	1.64	1.22	1.38				1.22			1.381
	Expt.											2			2			2
	(100)		2.51	1.64		1.64		2.83		1.65	2.17				1.65	1.64		2.167
	(110):<1-10>		2.75					2 97		1 75	213				1 75			2 1 3 1
Dt	(110):<001>		2.75					2.51		1.75	2.10				1.75			2.101
гι	(111)		2.2	1.44	2.19	1.44		2.51		1.44	1.66				1.44	1.44	2.2	1.656
																2.2		
	Expt.											2.49			2.49			2.5
	(100)																	0.424
Dh	(110)																	0.431
P0	(111)				0.5													0.366
																		0.6
	(100)	2.867	3.74					2.95			2.91							
1	(110)	2.911						3.19			3.06							
ir	(111)	2.783	3.26					2.59			2.84							
	Expt.											.3						
L												5						

Table 3-4 Surface energies of fcc metals

[0]:GEAM , [27]a:first-principles , [27]b:semi-emperical , [28]a:first-principles
[28]b:EAM , [28]c:Expt. , [29]a:TB , [29]b:LDA , [29]c:EAM , [29]d:MEAM
[29]e:Expt. , [30]:EAM, Expt , [32]:EAM , [33]LEED , [34]:MEAM

Element	surface	[J/m ²]																
		[0]	[27]a	[27]b	[28]a	[28]b	[28]c	[29]a	[29]b	[29]c	[29]d	[29]e	[31]	[12]	[30]	[32]	[33]	[34]
bcc																		
	(100)																	2.289
	(110)																	1.566
Fe	(111)																	1.72
	. ,																	
	Expt.																	2.36
	(100)			2.1			2.1	2.12	3.52	228	2.12							2.122
	(110):<1-10>			1.83			4 000	0.04	0.4.4	0.40	4.00							4.00
	(110):<001>			1.83			1.829	3.04	3.14	2.13	1.93							1.93
Мо	(111)							2.84			1.86							1.861
	(310):<130>			2.07			0.07											
	(310):<001>			2.07			2.07											
	Expt.											2.9						2.9
	(100)						2.328	3		1.99	3.29							3.292
	(110)						1.98	2.05		1.8	2.17							2.173
Та	(111)							3.14			2.31							2.305
Та	(310)						2.512											
	Expt.											2.78						2.78
	(100)						2.924	6.7	5.54	2.81	2.65	6						2.646
	(110)						2.575	4.3		2.6	2.23							2.232
W	(111)							6.75			2.25							2.247
	(310)						3.036											
	Expt.											2.99						2.99
	(100)	2.201																
Cr	(110)	1.979																
	(111)	2.501																
									2.86									
	(100)	2.641						2.37	3.1	1.97	2.02							
Nb									2.36									
IND	(110)	2.276						1.54	2.9	1.81	1.87							
	(111)	2.918						2.44			2.02							
	Expt.											2.3						
hcp																		
Co																		
Zr																		
Ti																		
Mg																		
Ru	(1000)	3.731																
Hf	(1000)	1.386																

Table 3-5Surface energies of bcc and hcp metals

Elment	surface	f [J/m²]										Elmen	t gb[J/m²]	
		[0]	[27]a	[27]b	[27]c	[28]a	[28]b	[28]d,f	[28]d,f	[28]e	[32]	[33]		[35]	[12]
fcc															
	(100)						1.38				1.38				
	(110)														
Cu	(111)						0.86				0.86		Cu		
														0.63	
	Expt.														
	(100)						1.27				1.27				
	(110)														
Ni	(111)						0.43				0.43		Ni		
														0.87	
	Expt.														
	(100)														
	(110):<1-10>		1.99												
	(110):<001>		1.84												
	(111)		16									1.25	ΔΙ		
			2.32												
			1.25												
			1.44			1.25									
	Expt.														
	(100)		2.8	0.64			0.82				0.82				
	(110)														
Αd	(111)			0.64			0.64				0.64		hΑ		
/ ·g										1.415			/ \y		
					1.42					+-0.3				0.56	0.47
	Expt.														
	(100)		4.56	1.79			1.79				1.79				
	(110)														
	(111)		2.77	1.51		2.77	1.51				1.51	2.77			
Au											2.77		Au		
					1.18					1.175					
	Event				1.34					+-0.2					
	EXPL.		2.00	0.04											
	(100)		3.00	0.94											
	(110).<1-10>		2.74	0.60											
Pd	(110):<001>		1.00	0.47									Pd		
	(111)			0.93											
	E														
	Expt.		0.4	0.00			0.00				0.00				
	(100)		8.1	2.69			2.69				2.69				
	(110):<1-10>		5.08								2.86				
	(110):<001>		1.81	2.00			2.00				5.61	E 64			
Pt	(111)		6.28	2.60			2.00					0.0 I	Pt		
			5.6			5.6									
I										2.574					
I	-	<u> </u>			2.57		<u> </u>			+-0.4					
L	Expt.									—					
I	(100)								L	L		L			
Pb	(110)					<u> </u>			<u> </u>	<u> </u>		<u> </u>	Pb		
· ~	(111)					0.82			L	L		L	. ~		
L											<u> </u>				
I	(100)	1.198	10.1							L	ļ				
lr	(110)	2.862								<u> </u>	L	L	lr		
	(111)	1.636	5.3												
	Expt.														

Table 3-6Surface stresses of fcc metals

Elmentsurfac f [J/m ²]											Flmen	apl	.1/m ²]		
Linter	June	[0]	[27]a	[27]h	[27]c	[28]a	[28]h	[28]d fxx	[28]d fvv	[28]e	[32]	[33]		[35]	[12]
bcc		[~]	[<u>-</u> ,]~	[-,]~	[-']~	[20]0	[20]~	[20]0,100	[20]0,177	[20]0	[02]	[00]		[00]	['~]
	(100)														
	(110)												1		
Fe	(111)										†		Fe		
	<u>,</u>										1			0.86	
	Expt.										1		1		
	(100)			2.24				2.241			1				
	(110):<	<1-10>		2.02				2.010	0.775				1		
	(110):<	<001>		0.78				2.019	0.775				1		
Мо	(111)								1.184						
	(310):<	<130>		2.25				2.247							
	(310)<	001>		1.18				2.241							
	Expt.														
	(100)							3.249							
	(110)							2.535	0.392						
_{Та}	(111)								1.647				Та		
ια	(310)							3.085							
														0.9	
	Expt.														
	(100)							3.032							
	(110)							2.385	0.271				W		
W	(111)								1.45						
	(310)							2.833							
	Expt.														
	(100)	1.813									Ļ				
Cr	(110)	0.256									Ļ		Cr		
	(111)	0.026									<u> </u>				
											┣──	 			
	(100)	3.399									ļ				
Nb	(110)	1.932				 					 	<u> </u>	Nb		
	(111)	0.864					 				 			0.70	
	Expt.					┢───┤	 				 	 	┣───┤	0.76	
						┢───┥	┢───┤				┨────			┢──┥	
ncp	r					┢───┥	┢───┥				───			0.05	
7.						┢───┤	 					┣───	C0 7	0.05	
<u>Ζ</u> Γ Τ :						┢───┥	┢───┥						Zr T:	┢───┥	
Ma							┢───┥				1		11 Ma		
NIQ Du	(1000)	0.455					┢───┥						Du		
Hf	(1000)	2 166					┢───┤						Hf	┢──┤	

Table 3-7 Surface stresses of bcc and hcp metals

3.2.2 界面エネルギ・界面応力

以下の Table3-8 に,本研究で得られた界面エネルギ・界面応力,及び各結晶の x,y 方向の歪みを示す.

材料	構造	界面E (J/m2)	界面応力f(J/m2)		x(%)	y(%)
	fcc_fcc	0.04082	0.08800	Cu	0.485	0.485
Cu-Ai	100-100	0.04002	. 0.00000	Al	-0.480	-0.480
	foo foo	0.50762	2 0 4 6 9 4	Cu	1.420	1.420
Gu-FD	100-100	0.59702	. 2.94004	Pb	-1.380	-1.380
	foo boo	0.40505	0.22801	Cu	-0.312	-1.316
Cu-re		0.40590	0.52091	Fe	0.314	1.351
	foo boo	0 / 1 2 9 7	0 0 0 0 2 2	Cu	0.785	-0.241
Cu-Ta		0.41207	0.00032	Та	-0.773	0.242
	foo boo	0.95919	1 09/91	Cu	-0.138	-0.128
		0.00010	1.00401	Мо	0.139	0.128
	foo hon	0.07721	0 74099	Cu	-0.836	-0.836
Cu-C0	nee-nep	0.07731	-0.74900	Со	0.850	0.850
	foo hon	0.05190	0.62107	Cu	-0.836	-0.836
Cu-C0	ree-nep	0.05168	-0.02197	Со	0.850	0.850
	foo foo	0.49600	0 10044	Ag	-0.122	-0.122
Ay-Au		0.4000	0.19044	Au	0.123	0.123

Table 3-8Interface energies

fcc-fccの組み合わせは,互いに(100)面を向き合わせたもの,

fcc-bccの組み合わせは fccの(111)面とbccの(110)面を向き合わせたもの,

fcc-hcpの組み合わせは, fccの(111)面とhcpの(1000)面を向き合わせたものである.

下から2段目と3段目にあるCu-Coの組み合わせの違いは,積層する順の違いによる.

CoがABAB..., CuがA'B'C'A'B'C'...と積層されているときに,

(A と A', B と B'はそれぞれ対等な層)

上段は, ...ABAB-A'B'C'A'B'C'...

下段は,...ABAB-A'C'B'A'C'B'... となっているものである.

3.2.3 真性応力予測

前項 3.2.1 で得られた表面エネルギ・表面応力の値を元に,真性応力の膜厚 による変化を見積もった.

3.2.3-1 キャピラリ効果に伴う圧縮応力

Floro ら[5]によると,円柱状の島を仮定した場合,キャピラリ効果に伴い島内部に発生する応力は以下の式で与えられる.

$$\sigma_{ig} = \frac{f+g}{A} \left(\frac{1}{r} - \frac{1}{r_{LD}} \right)$$
(3. 14)

ここで, *f* は表面応力, *g* は基板との界面応力, *A* は島のアスペクト比(島の 高さと半径の比), *r*_{LD} は島が基板に拘束を受け始める("locked-down"される)膜厚 (半径)である.

基板を Si と仮定することで, 膜と基板の界面応力 g は膜の表面応力 f に比べ て十分小さく無視できると近似した.

また,アスペクト比A=1を仮定した.この仮定により,膜厚と島の半径を同等に扱うことが出来る.

膜厚が r_{LD} に達しないうちは,界面の拘束がないため,応力が発生しない.r_{LD} に到達後,膜が成長するにつれ,圧縮応力が増加していくことがわかる.その 大きさは最大でも-1[GPa]に満たない.実験でも合体前に圧縮応力が発生するこ とが知られており[36],本結果はその実験結果を説明しうるものと考えられる.

この時,各元素を材料に用いて, r_{LD} をパラメータとしたときの,膜厚と発生する圧縮応力 σ_{ie} との関係を Fig.3.5~3.20 に示す.

Fig. 3-5 Compressive intrinsic stress - film thickness diagram for Cu

Fig. 3-6 Compressive intrinsic stress - film thickness diagram for Ni

Fig. 3-7 Compressive intrinsic stress - film thickness diagram for Al

Fig. 3-8 Compressive intrinsic stress - film thickness diagram for Ag

Fig. 3-9 Compressive intrinsic stress - film thickness diagram for Au

Fig. 3-10 Compressive intrinsic stress - film thickness diagram for Pd

Fig. 3-11 Compressive intrinsic stress - film thickness diagram for Pt

Fig. 3-12 Compressive intrinsic stress - film thickness diagram for Pb

Fig. 3-13 Compressive intrinsic stress - film thickness diagram for Fe

Fig. 3-14 Compressive intrinsic stress - film thickness diagram for Mo

Fig. 3-15 Compressive intrinsic stress - film thickness diagram for Ta

Fig. 3-16 Compressive intrinsic stress - film thickness diagram for W

Fig. 3-17 Compressive intrinsic stress - film thickness diagram for Co

Fig. 3-18 Compressive intrinsic stress - film thickness diagram for Zr

Fig. 3-19 Compressive intrinsic stress - film thickness diagram for Ti

Fig. 3-20 Compressive intrinsic stress - film thickness diagram for Mg

3.2.3-2 島の合体に伴う引張応力

Nix ら[37]は ,クラックが閉じる過程を島の合体とみなすモデルを用いることで ,

島同士の合体に伴う応力 σ_{xp} を次のような形で見積もった.

$$\sigma_{zip} = \sqrt{E \frac{(1+\nu)\Delta\gamma}{(1-\nu)r_I}}$$
(3. 15)

ここで,rは合体時の島半径である.

Eはヤング率, ν はポアソン比, $\Delta \gamma = 2\gamma_s - \gamma_{gb}$ で, γ_s は表面エネルギ, γ_{gb} は 島と島の間の粒界エネルギを意味する.

Seel ら[38]は,有限要素法による計算から,式(3.15)よりも応力の緩和された 以下のような式を導いた.

$$\sigma_{zip} = \frac{q\Delta\gamma}{r_l} \tag{3. 16}$$

 $\Delta \gamma, r_i$ は式(3.15)と同じもので, qは, 1~10のオーダーの無次元定数である.

Freund ら[11]は,弾性体の接触理論を用いて島同士の合体に伴う応力 σ_{zp} を次のような形で見積もった.

$$\frac{\sigma_{zip}}{E} = A_N \left(\frac{\Delta\gamma}{2r_I E}\right)^{C_N}$$
(3. 17)

 $\Delta \gamma, r_i$ は式(3. 15)と同じもので, N は次元数であり, N = 1の時, 一次元長方 形形状の島を, N = 2の時, 円柱状の島を, N = 3の時, 3 次元半球状の島を表 す. A_N, C_N は次元数に応じた構造パラメータであり, $A_1 = 0.82, A_2 = 0.44, A_3 = 4, C_1 = \frac{1}{2}, C_2 = \frac{2}{3}, C_3 = 1$ という値である .

粒界エネルギは Table3-6,7 を参照し 表にないものに関しては ,Hoffman[39] による近似 $2\gamma_s - \gamma_{gb} \approx \frac{5}{3} \gamma_{gb}$ を用いた .

本研究で得た各材料の表面エネルギ γ_s と,ヤング率Eを代入することで,合体時の島半径と発生応力との関係を見積もることが出来る.

ヤング率は,弾性定数を用いて

$$E = \frac{C_{11} - C_{12}}{C_{33}C_{11} - C_{13}^2} \left\{ C_{33} \left(C_{11} + C_{12} \right) - 2C_{13}^2 \right\}$$
(3. 18)

と表され[40],各材料の弾性定数とポアソン比はTable 3-9 にあるものを用いた.

Table 3-9 Elastic constants, Poisson ratio and Young's modulus[41]

Element	C ₁₁ [GPa]	C ₁₂ [GPa]	C ₁₃ [GPa]	C ₃₃ [GPa]	C ₄₄ [GPa]		E[GPa]
Та	262	156	156	262	82.6	0.339	145.56
Мо	459	168	168	459	111	0.298	368.97
W	517	203	203	517	157	0.282	402.53
Fe	230	135	135	230	117	0.290	130.14
Ni	247	153	153	247	122	0.304	129.96
Pd	224	173	173	224	71.6	0.385	73.22
Pt	347	251	251	347	76.5	0.396	136.29
Cu	169	122	122	169	75.3	0.346	66.70
Ag	123	92	92	123	45.3	0.369	44.27
Au	190	161	161	190	42.3	0.423	42.30
Al	108	62	62	108	28.3	0.349	62.78
Pb	48.4	41.4	41.4	48.4	14.8	0.409	10.23
Mg	59.3	25.7	21.4	61.5	16.4	0.289	45.43
Ti	160	90	66	181	46.5	0.318	103.95
Zr	144	74	67	166	33.4	0.332	98.10
Со	295	159	111	335	71	0.320	200.37

以上から,各元素を材料に用いた場合の,合体時の島半径と,島合体に伴う 引張応力 *σ*_{ziv}の関係を見積もった. 便宜上,式(3.17),(3.16),(3,15)で表される引張応力の形を,それぞれ model A, B, C とよんだ.

model A では次元数 N, model B では無次元定数 q をパラメータとして変化 させた.

Fig. 3-21 Tensile intrinsic stress - film thickness diagram in model A and C for Cu

Fig. 3-22 Tensile intrinsic stress - film thickness diagram in model B for Cu

Fig. 3-23 Tensile intrinsic stress - film thickness diagram in model A and C for Ni $% \left({{{\rm{Ni}}} \right)_{\rm{c}}} \right)$

Fig. 3-24 Tensile intrinsic stress - film thickness diagram in model B for Ni

Fig. 3-25 Tensile intrinsic stress - film thickness diagram in model A and C for Al $$\rm for \ Al$$

Fig. 3-26 Tensile intrinsic stress - film thickness diagram in model B for Al

Fig. 3-27 Tensile intrinsic stress - film thickness diagram in model A and C for Ag $$\rm for \ Ag$$

Fig. 3-28 Tensile intrinsic stress - film thickness diagram in model B for Ag

Fig. 3-29 Tensile intrinsic stress - film thickness diagram in model A and C for Au

Fig. 3-30 Tensile intrinsic stress - film thickness diagram in model B for Au

Fig. 3-31 Tensile intrinsic stress - film thickness diagram in model A and C for Pd

Fig. 3-32 Tensile intrinsic stress - film thickness diagram in model B for Pd

Fig. 3-33 Tensile intrinsic stress - film thickness diagram in model A and C for Pt $% \left({{{\rm{P}}_{{\rm{F}}}} \right)$

Fig. 3-34 Tensile intrinsic stress - film thickness diagram in model B for Pt

Fig. 3-35 Tensile intrinsic stress - film thickness diagram in model A and C for Pb

Fig. 3-36 Tensile intrinsic stress - film thickness diagram in model B for Pb

Fig. 3-37 Tensile intrinsic stress - film thickness diagram in model A and C for Fe $\,$

Fig. 3-38 Tensile intrinsic stress - film thickness diagram in model B for Fe

Fig. 3-39 Tensile intrinsic stress - film thickness diagram in model A and C for Mo $\,$

Fig. 3-40 Tensile intrinsic stress - film thickness diagram in model B for Mo

Fig. 3-41 Tensile intrinsic stress - film thickness diagram in model A and C for Ta

Fig. 3-42 Tensile intrinsic stress - film thickness diagram in model B for Ta

Fig. 3-44 Tensile intrinsic stress - film thickness diagram in model B for W

Fig. 3-45 Tensile intrinsic stress - film thickness diagram in model A and C for Co

Fig. 3-46 Tensile intrinsic stress - film thickness diagram in model B for Co

Fig. 3-47 Tensile intrinsic stress - film thickness diagram in model A and C for $\rm Zr$

Fig. 3-48 Tensile intrinsic stress - film thickness diagram in model B for Zr

Fig. 3-49 Tensile intrinsic stress - film thickness diagram in model A and C for Ti

Fig. 3-50 Tensile intrinsic stress - film thickness diagram in model B for Ti

Fig. 3-51 Tensile intrinsic stress - film thickness diagram in model A and C for Mg $\,$

Fig. 3-52 Tensile intrinsic stress - film thickness diagram in model B for Mg

3.2.3-3 重ね合わせ

上記の 2 つのメカニズムによってのみ,真性応力が発生するものとして,各 元素を膜材料に使った場合の,薄膜の一次元真性応力予測を行った.

以下に,各材料の,膜厚と応力,膜厚と膜厚×応力の積の関係を示す.

引張応力発生の式やパラメータは,材料ごとに,圧縮-引張-圧縮の応力変 化が再現できているような値を選んだ.

Fig. 3-53 Intrinsic stress - film thickness diagram for Cu

Fig. 3-54 StressThickness - film thickness diagram for Cu

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , N=2 (model A)

Fig. 3-55 Intrinsic stress - film thickness diagram for Ni

Fig. 3-56 StressThickness - film thickness diagram for Ni

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , N=2 (model A)

Fig. 3-57 Intrinsic stress - film thickness diagram for Al

Fig. 3-58 StressThickness - film thickness diagram for Al

 $r_{\rm LD}{=}10[~~]$, $r_{\rm I}{=}50[~~]$, $q{=}10~(model~B)$

Fig. 3-59 Intrinsic stress - film thickness diagram for Ag

Fig. 3-60 StressThickness - film thickness diagram for Ag

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10~(model~{\rm B})$

Fig. 3-61 Intrinsic stress - film thickness diagram for Au

Fig. 3-62 StressThickness - film thickness diagram for Au

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10~(model~{\rm B})$

Fig. 3-63 Intrinsic stress - film thickness diagram for Pd

Fig. 3-64 StressThickness - film thickness diagram for Pd

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10 \ (model \ B)$

Fig. 3-65 Intrinsic stress - film thickness diagram for Pt

Fig. 3-66 StressThickness - film thickness diagram for Pt

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10 \ (model \ B)$

Fig. 3-67 Intrinsic stress - film thickness diagram for Pb

Fig. 3-68 StressThickness - film thickness diagram for Pb

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}5~(model~B)$

Fig. 3-69 Intrinsic stress - film thickness diagram for Fe

Fig. 3-70 StressThickness - film thickness diagram for Fe

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10~(model~{\rm B})$

Fig. 3-71 Intrinsic stress - film thickness diagram for Mo

Fig. 3-72 StressThickness - film thickness diagram for Mo

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , N=2 (model A)

Fig. 3-73 Intrinsic stress - film thickness diagram for Ta

Fig. 3-74 StressThickness - film thickness diagram for Ta

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}5~(model~B)$

Fig. 3-75 Intrinsic stress - film thickness diagram for W

Fig. 3-76 StressThickness - film thickness diagram for W

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , N=3 (model A)

Fig. 3-77 Intrinsic stress - film thickness diagram for Co

Fig. 3-78 StressThickness - film thickness diagram for Co

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , N=2 (model A)

Fig. 3-79 Intrinsic stress - film thickness diagram for Zr

Fig. 3-80 StressThickness - film thickness diagram for Zr

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}10~(model~{\rm B})$

Fig. 3-81 Intrinsic stress - film thickness diagram for Ti

Fig. 3-82 StressThickness - film thickness diagram for Ti

 $r_{\rm LD}{=}50[$] , $r_{\rm I}{=}100[$] , $q{=}5~(model~B)$

Fig. 3-83 Intrinsic stress - film thickness diagram for Mg

Fig. 3-84 StressThickness - film thickness diagram for Mg

 r_{LD} =50[], r_{I} =100[], N=2 (model A)

3.3 考察

本節では,前節で予測された真性応力値と,今までに実験で得られている真 性応力値とを比較する.

Floro らの実験[5]からは Table 3-10 のような値が得られている.

Table 3-10Observed stresses during VW growth

Material	Mximum tensile stress [GPa]	Maximum compressive stress [GPa]
Ag	0.19	-0.06
Al	0.12	-0.13
Ti	1.8	-0.20

それに対し,本論文の前節で得られた真性応力予測からは, Ag, Al, Ti に関して Table 3-11 のような最大引張・圧縮応力が得られる.

 Table 3-11
 Calculated stresses by molecular dynamics

Material	Mximum tensile stress [GPa]	Maximum compressive stress [GPa]
Ag	0.04	-0.08
Al	0.03	-0.24
Ti	0.01	-0.09

Tiの最大引張応力を除けば,ほぼ実験に近い値が得られているといえる. Tiの最大引張応力の不一致に関しては,パラメータの再fittingが必要となる.

また, Seel らの実験[12]からは, Fig 3-83 のグラフが得られており, Ag の薄 膜の最大の引張・圧縮応力は,およそ 0.07[GPa], 0.02[GPa]と読み取れる.

Fig 3-85 (a) Observed stress-thickness vs nominal film thickness for Ag thin films on oxidized Si substrates. (b) The same data replotted as stress-thickness divided by the nominal film thickness.

これと,本論文の Fig. 3-57, 58 で得られた Ag の真性応力予測のグラフを比較すると,島合体後の圧縮応力の大きさは異なるものの,初期段階の圧縮応力のピーク時の膜厚や引張応力の最大値などで十分近い値が得られている.

Fig 3-86 StressThickness - film thickness diagram and Intrinsic stress film thickness diagram for Ag

Frieson ら[24]は borosilicate glass の上に Cu を堆積させ, Fig. 3-85 のよう な, 膜厚 vs. 膜厚 × 応力のグラフを得た.これより,島の合体後の定常的な圧 縮応力は 200[MPa]と見積もられる.

Fig 3-87 The typical stress-thickness evolution as a function of thickness for Cu deposition on borosilicate glass.

本研究で得られた値は Fig. 3-86 の通りであり, 島合体後の定常的な圧縮応力 (50[MPa]), Stress-thickness の最大値(2[GPa]=0.2[N/m])共にかなり小さく なっている.

Fig 3-88 Intrinsic stress - film thickness diagram and StressThickness - film thickness diagram for Cu

Hearn ら[42]は, Au 基板上の Ni 薄膜の応力を, Ni の deposition rate を変 化させて測定し, Fig. 3-87 のグラフを得た.これより, 定常的な応力は 50~ 131[MPa]となる.

Fig 3-89 Overlay of stress thickness vs thickness plots taken during electrodeposition of Ni onto a Au substrate.

本研究による Ni の真性応力予測は Fig3-88 のようになり, Fig3-87 での, deposition rate が最も小さいときと同等の圧縮応力が生じている.depositin rate が大きくなるにつれて引張応力が大きくなっているが,これを再現するに は,本研究では考えなかった表面の mobility まで考慮に入れる必要があると考 えられる.

Fig 3-90 Intrinsic stress - film thickness diagram and StressThickness - film thickness diagram for Ni

前節で予測された真性応力は,実験値と,オーダーとしては等しくなるもの が多く,符号の変化やグラフの形など,定性的な観点で見れば実験の再現性は 良いといえる.

第4章 結論

本研究による計算結果は,実験と完全に一致するほどの再現性はなかったが, 定性的な傾向の比較という観点から見れば十分信頼性のあるものであった.こ れにより,分子動力学シミュレーションによる真性応力発生メカニズム解明の 可能性を実証することが出来た.

今後は,他の計算手法や条件を組み込んだ,より正確な真性応力予測方法の 構築が必要となってくるであろう.

参考文献

- [1] 金原粲 ,河野彰夫 ,生地文也 ,馬場茂 ,薄膜の力学的特性評価技術 .Realize inc , 1992 .
- [2] M.F. Doemer and W.D. Nix. Stresses and deformation processes in thin films on substrates. CRC Critical Reviews in Solid and Materials Sciences, Vol. 14, pp. 225-268, 1988.
- [3] R .Koch .The intrinsic stress of polycrystalline and epitaxial thin metal films . *J . Phys .: Condens . Matter* , Vol . 6 , pp . 9519-9550 , 1994 .
- [4] J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz.
 Physical origins of intrinsic stresses in volmer-weber thin films. *MRS Bulletin*, Vol. 27, pp. 19-25, 2002.
- [5] J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson. The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films. *J. Appl. Phys.*, Vol. 89, pp. 4886-4897, 2001.
- [6] R.C. Cammarata and T.M. Trimble .Surface stress model for intrinsic stresses in thin films . *J. Mater .Res* ., Vol .15 , pp .2468-2474 , 2000 .
- [7] S. P. A. Gill, H. Gao, V. Ramaswamy, and W. D. Nix. Confined capillary stress during the initial growth of thin films on amorphous substrates. J. Appl. Mech., Vol. 69, pp. 425-432, 2002.
- [8] F. Spaepen. Interfaces and stressesin thin films. *Acta mater*., Vol. 48, pp. 31-42, 2000.
- [9] C. Friesen and C. V. Thompson. Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth. *Phys*. *Rev. Lett.*, Vol. 89, pp. 126103(1)-126103(4), 2002.
- [10] W.D. Nix and B.M. Clemens. Crystalline coalescence: A mechanism for intrinsic tensile stresses in thin films. *J. Mater .Res*., Vol. 14, pp. 3467-3473, 1999.
- [11] L.B.Freund and E.Chason .Model for stress generated upon contact of neighboring islands on the surface of a substrate *J Appl Phys*., Vol. 89, pp. 4866-4873, 2001.
- [12] S.C. Seel, C.V. Thompson, S.J. Hearne, and J.A. Floro. Tensile stress evolution during deposition of Volmer-Weber thin films.

J. Appl. Phys., Vol. 88, pp. 7079-7088, 2000.

- [13] S. C. Seel and C. V. Thompson. Tensile stress generation during island coalescence for variable island-substrate contact angle .J .Appl. Phys., Vol. 93, pp. 9038-9042, 2003.
- [14] J.W.Gibbs .The scientific papers of J.Willard Gibbs .London: Longmans Green, 1906.
- [15] R. A. Kiehl, M. Yamaguchi, O. Ueda, N. Horiguchi, and N. Yokoyama .Patterned self-assembly of one-dimensional arsenic particle arrays in GaAs by controlled precipitation . *Appl . Phys*. Lett., Vol. 68, pp. 478-480, 1996.
- [16] R. J. Nichols, T. Nouar, C. A. Lucas, W. Haiss, and W. A. Hofer. Surface relaxation and surface stress of Au (111). *Surf. Sci.*, Vol. 513, pp. 263-271, 2002.
- [17] E. Kampshoff, E. Hahn, and K. Kern. Correlation between surface stresses and the vibrational shift of CO chemisobedon Cu surfaces. *Phys. Rev. Lett.*, Vol. 73, pp. 704-707, 1994.
- [18] A. Bietsch, J. Zhang, M. Hegner, H. Lang, and C. Gerber, Rapid functionalization of cantilever array sensors by inkjet printing. *Nanotechnology*, Vol, 15, pp. 873-880, 2004.
- [19] R .Berger , E .Delamarche , H .P .Lang , C .Gerber , J .K .Gimzewski , E . Meyer , and H . Guntherodt . Surface stress in the self-assembly of alkanethoils on gold . *Science* , Vol . 276 , pp . 2021-2024 , 1997 .
- [20] R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas. Micromechanical cantilever as ultrasensitive pH microsensor. *Appl. Phys. Lett.*, Vol. 81, pp. 3091-3093, 2002.
- [21] J. Fritz, M. K. Baller, H. R. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski. Translating biomolecular recognaition into nanomechanics. *Science*, Vol. 288, pp. 316-318, 2000.
- [22] G.G.Stoney, Proc. Roy. Soc. 82, 172, 1909.
- [23] Koch R., Dongzhi Hu, Das, A. K. Compressive stress in polycrystalline Volmer-Weber films. *Phys. Rev. Lett.*, v 94, n 14, 15. April 2005, p 146101/1-4.
- [24] Friesen , C .; Seel , S . C .; Thompson , C . V . Reversible stress changes

at all stages of Volmer-Weber film growth .J .Appl .Phys, v 95, n 3, 1 Feb. 2004, p 1011-20

- [25] Zhou , X . W .; Wadley , H . N . G .; Johnson , R . A .; Larson , D . J .; Tabat , N .; Cerezo , A .; Petford-Long , A . K .; Smith , G . D . W .; Clifton , P .H .; Martens , R .L .; Kelly , T .F .Atomic scale structure of sputtered metal multilayers *Acta Materialia* , 49 , n 19 , Nov 14 , 2001 , p 4005-4015
- [26] (株)富士通 Materials Explorer web-site http://venus.netlaboratory. com/material/messe/me3/
- [27] W. Haiss. Surface stress of clean and adsorbate-coverd solids. *Rep. Prog. Phys.* Vol. 64, pp. 591-648, 2001.
- [28] Cammarata , Robert C . Surface and interface stress effects in thin films . Progress in Surface Science , v 46 , n 1 , May , 1994 , p 1-38 .
- [29] Mehl , M . J . ; Papaconstantopoulos , D . A . Applications of a tight-binding total-energy method for transition and noble metals : Elastic constants ,vacancies ,and surfaces of monatomic metals .*Phys . Rev . B(Condensed Matter)* , v 54 , n 7 , 15 Aug . 1996 , p 4519-30 .
- [30] Daw , M . S .; Foiles , S . M .; Baskes , M . I . The embedded-atom method : a review of theory and applications . *Material Science Reports* , v 9 , n 7-8 , March 1993 , p 251-310
- [31] Clemens ,B .M .; Nix ,W .D .; Ramaswamy ,V . Surface-energy-driven intermixing and its effect on the measurement of interface stress . *Journal of Applied Physics* , v 87 , n 6 , 15 March 2000 , p 2816-20
- [32] Gumbsch , P .; Daw , M .S . Interface stresses and their effects on the elastic module of metallic multilayers . *Physical Review B (Condensed Matter)* , v 44 , n 8 , 15 Aug . 1991 , p 3934-8
- [33] Payne ,M .C .; Roberts ,N .; Needs ,R .J .; Needels ,M .; Joannopoulos , J . D . Total energy and stress of metal and semiconductor surfaces . *Surface Science* , v 211-212 , April 1989 , p 1-20
- [34] Baskes ,M .I .Modified embedded-atom potentials for cubic materials and impurities . *Physical Review B (Condensed Matter)*, v 46, n 5, 1 Aug . 1992, p 2727-42
- [35] Lewis ,A .C .; Joel ,D .; Weihs ,T .P .Stability in thin film multilayers and microlaminates : the role of free energy ,structure ,and orientation

at interfaces and grain boundaries *.Scripta Materialia* ,v 48 ,n 8 ,14 April 2003 , p 1079-85

- [36] Floro , J . A .; Kotula , P . G .; Seel , S . C .; Srolovitz , D . J . Origins of growth stresses in amorphous semiconductor thin films . *Physical Review Letters* , v 91 , n 9 , 29 Aug . 2003 , p 096101/1-4
- [37] W.D. Nix and B.M. Clemens, J. Mater . Res. Vol14, pp. 3467, 1999.
- [38] S.C. Seel, C.V. Thompson, S.J. Hearne, and J.A. Floro, J. Appl. Phys.
- [39] Hoffman , R . W . Stresses in thin films : the relevance of grain boundaries and impurities . *Thin Solid Films* , v 34 , n 2 , 17 May 1976 , p 185-90
- [40] 中原一郎,応用弾性学,実教出版
- [41] Chen , Q .; Sundman , B . Calculation of Debye temperature for crystalline structures-A case study on Ti , Or , and Hf . Acta Materialia , v 49 , n 6 , 2 April 2001 , p 947-61 .
- [42] Hearne ,S .J .; Floro ,J .A .Mechanisms inducing compressive stress during electrodeposition of Ni . *Journal of Applied Physics* , v 97 , n 1 , 1 Jan . 2005 , p 14901-1-6