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C h a p t e r  1 .  Introduction 

1 . 1  Background and Motivation 

 

1 . 1 . 1  Introduction 

The importance of semiconductors in human lives is more often than not left unappreciated. 

Semiconductor enables our computers, smart phones, medical systems and many other 

electronic devices that are necessary in our lives. As people will continue to demand higher 

standards of living along with the improvement of technology, semiconductors will continue to 

play an important role in the future.  

Semiconductors are materials that have an immediate electrical conductivity between 

conductors and insulators. Semiconductors integrated circuits are the basic foundation of the 

electronics industry due to their ability to change their electrical conductivity upon varying 

conditions. Today, silicon is the dominant semiconductor material used in integrated circuits due 

to their wide bandwidth, low cost and ability to be oxidized readily to form high quality silicon 

dioxide insulator. 

 

1 . 1 . 2  Semiconductor structure and fabrication process 

IC fabrication technology is a planar process that takes place over the whole plane of a silicon 

wafer. Fig 1-1 below shows the major steps of semiconductor fabrication.  
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The various steps are as follows: 

a) A bare n-type silicon substrate. 

b) The conducting layer is either deposited by chemical vapor deposition or the silicon 

substrate could be oxidized to form silicon dioxide. In Fig 1-1, the latter is shown. In most 

instances, an additional layer of thin film may be deposited above the silicon 

dioxide/conducting layer. This is especially true for memory chips such as NAND and 

DRAM. 

The next 3 steps from c) to e) are known as photolithography. Photolithography is a 

patterning process used to define the geometry of the semiconductor.  

c) Ultraviolet light sensitive photo resist is applied to the silicon dioxide layer. 

d) The wafer is exposed to UV light through a pattern mask.  

e) The photo resist on exposed areas are washed away and while those under opaque areas 

remain. 

f) The silicon dioxide layers without photo resist are then etched away by gaseous chemicals. 

g) The remaining photo resist is then washed away. The structure seen in here is known as the 

line and space pattern. 

h) Finally, the junctions are formed by implanting ions and contact points are formed by 

coating the layers with a layer of metal film. 
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Fig. 1-1 Semiconductor fabrication process [1]. 

  



8 

 

1 . 1 . 3  Trends and emerging problems in semiconductor 

industry  

The roadmap of the semiconductor and electronics industry is mapped out by Moore’s law, a 

prediction that the number of transistors on a silicon wafer will double with every production 

cycle (18 months – 24 months) [2]. Fig. 1-2 shows a graph of number of transistors on a silicon 

wafer against the years and nodes. This increase in number of transistors is a result of 

decreasing element size, also known process nodes. The actual definition of process nodes tend 

to vary with semiconductor companies and countries but is most commonly defined as the half 

pitch of a semiconductor, the distance across half the element and half the channel. Fig. 1-3 

below shows the definition of a half pitch. 

 

Fig. 1-2 Graph showing Moore’s law: doubling of transistors as process nodes scale down [2]. 
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Fig. 1-3 Half pitch of a memory chip [3]. 

Smaller process nodes enable electronic devices to have higher processing power, lower power 

consumption, lower production costs and smaller form factor. This has led to the evolution of 

mobile devices such as smart phones, tablet computers and gaming devices. As the half pitch 

decreases, the width of the semiconductor element also decreases, but the height of the element 

does not decrease proportionally. The height has not changed much despite decreasing process 

nodes as there needs to be a certain height to ensure sufficient resistance between the channels 

and contact points. As a result, the ratio of width to height of the elements decreases along with 

process nodes.  

The decreasing width to height ratio has led to lower mechanical strength in the semiconductor 

elements and signs of mechanical deformation (buckling) during the etching process (Fig. 

1-1(f)) has been observed in recent years. The driving force for this deformation is the residual 

stress formed during the deposition phase (Fig. 1-1(b)). Residual stress can be divided into two 

types, thermal stress and intrinsic stress. Deposition usually occurs at a high temperature, and 
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upon cooling, the difference in the thermal expansion rates between the substrate and the 

deposited material causes thermal stress. On the other hand, intrinsic stress is a form of residual 

stress which arises during deposition processes and is already present at deposition temperature. 

There are various mechanisms for the formation of intrinsic stress such as vacancy annihilation, 

grain growth phase transition and difference in lattice spacing’s of the substrate and deposited 

layer [4]. 

As a result of the stress and lowered mechanical strength, periodic waves are formed in the line 

and space structures as shown in Fig. 1-4, instead of the straight line and space structures seen 

in Fig. 1-1(g). This periodic shape causes the neighboring elements to touch, creating short 

circuits within the chip, undermining its quality. 

 

 

Fig. 1-4 Periodic wave like buckling patterns in line and space structure of semiconductors [5].  
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1 . 1 . 4  Background research 

Prior research on 1 layer thin plate buckling has been conducted on swelling gels with different 

properties and their wavelengths, λ have been studied [6]. The experiment conducted involved a 

strip of soft gel being attached to a strip of stiff gel and immersed into water as shown in Fig. 

1-5. Due to the different elastic and swelling properties, stress is generated as the soft swelling 

gel absorbs water, causing it to bend out of plane (z-direction), forming periodic wave like 

patterns. 

 

Fig. 1-5 Strip geometry of swelling gel, T.Mora [6]. 

The experimental results obtained were consistent with the theoretical results above a critical 

length and were able to predict the wavelengths to a consistent degree above height to width 

ratios of 3 to 4 as shown in Fig. 1-6.  

However, the research was focused on the predicting λ for 1 layer models, and did not delve 

further into the prediction of the stress in the plate at which buckling occurs or for multilayer 

models. 
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Fig. 1-6 Experimental Data scatter plot against theoretical data [6]. 

 

Research has also been done in attempting predict the buckling coefficient of multilayer models 

at varying element heights [5]. However, the research did not touch upon the relationship the 

buckling coefficient have with the mask height and width. The research also did not delve 

further into studying the wavelength and amplitude of the buckled structure. 

In conclusion, the previous research has not made clear the characteristics of the buckling 

phenomenon, and the factors governing the buckling wavelength and stress.  
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1 . 2  Objectives and outline of research 

In aim of improving the framework for the design of semiconductor nanoscale structures to 

prevent buckling phenomenon, the objective of this research is to make clear the characteristics 

of the buckling mechanism in 2 layer thin plates and the factors affecting the buckling 

wavelength and stress. This shall be achieved through the use of Finite Element Method (FEM) 

analysis to simulate the buckling phenomenon. 

The following researches are proposed in order to achieve the main objective. 

1) Based on a thin plate theory, create an accurate finite element model. 

Prior to studying 2 layer thin plate models that can simulate the buckling phenomenon in 

semiconductors, it is important to confirm the correct boundary and force conditions to be 

used. Given the availability of theoretical equations for the 1 layer model, these equations 

are used to validate a 1 layer model. 

2) Simulate the buckling phenomenon in 2 layer models and study the relationships between 

the various structural parameters, wavelength and stress at which buckling occurs.  

FEM analysis of the 2 layer model will be conducted and relationship equations shall be 

drawn from the results. Comparison with the experimental data would give us an insight on 

the accuracy of these equations and the shortcomings of FEM analysis. 
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C h a p t e r  2 .  1 Layer Thin Plate Model 
 

2 . 1  Introduction 

Semiconductors have small width to height ratios and can be considered as thin flat plates. This 

chapter aims to explore the theory of the buckling phenomenon of 1 layer thin plates and 

compare them with FEM simulation results. 

Chapter 2.2 will explain the theoretical equations behind thin plate deformation and Chapter 2.3 

will highlight the simulation results from FEM analysis and compare them with the theoretical 

equation. 

 

2 . 2  Föppl von Kármán Equations for thin elastic plates 

 

 

Fig. 2-1 Deformation in thin plates. 

l: height of plate; h: width of plate; Nx: external force; w: out plane displacement 

Upon external force Nx or internal stress σ, out plane displacement occurs in thin plates as 

shown in Fig. 2-1. This out plane deflection is governed by a set of nonlinear partial differential 

equations known as the Föppl von Kármán equations [7]. These equations are derived from the 
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force, moments and stress equations in an elastic plate with residual strains. 

The following 2 assumptions are necessary for this equation: 1) the height of the model, l must 

be significantly greater than its width, h (i.e. the width to height ratio, h/l must be significantly 

small); 2) the out plane displacement, w must be sufficiently small.  

The Föppl von Kármán equations are as follows [7]: 
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where        is the out plane displacement; h is the width of the plate in the y-direction;     

is the in plane stress tensor; E is the Young’s modulus of the material; v is the Poisson’s ratio of 

the material. D is a function of the Young’s modulus and the Poisson’s ratio and is known as the 

bending stiffness. 

Expanding Eq. (2.1), we get Eq. (2.3) 
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Similarly, Eq. (2.2) can be expanded to give the following 2 equations, 
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(2.5) 

Substitute Eqs. (2.4) and (2.5) into Eq. (2.3), 
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As we only consider the stress to work in the x-direction,     and     is assumed to be zero. 

We arrive at Eq. (2.7) 

          
   

   
   (2.7) 

Next, the following substitutions are carried out to make the physical quantities dimensionless. 

   
 

 
   

 

 
 where   is the unit length 
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 is the unit stress 

 

(2.8) 

      
   

   
      

          

  
  (2.9) 

P is the compressive non-dimensional stress applied uniformly along the x-direction within the 

plate and is proportional to the squared of the width to height ratio as seen in Eq. (2.8). 

Next, we assume that the out plane displacement is governed by a sinusoidal function with wave 

number q. Where q is the non-dimensional wave number of the plate and is inversely 

proportional to the height of the plate. 
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                   (2.10) 

 where   
  

 
   

Substituting Eq. (2.10) into Eq. (2.9), we get Eq. (2.11) 

                           (2.11) 

Eq. (2.11) is a fourth order linear differential equation and has the following general solution. 

                               (2.12) 

 Where            ,              

 

Next, we solve the Eq. (2.12) by taking into consideration the following boundary conditions: 

1)   = 0  

At the base, the plate is fully bounded hence the w and the deflection angle, 
  

  
 is assumed 

to be zero. Substituting w   
  

  
   into Eq. (2.12), we yield, 

      (2.13) 

       (2.14) 

2) When   = 1 

At the free end, the plate is unbounded, hence the bending moment, torque moment and 

shear force is zero. Eq. (2.15) represents the bending moment and Eq. (2.16) represents 

summation of the torque moment and shear force. 
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             (2.15) 

                   (2.16) 

 

Substituting the general solution Eq. (2.12) into Eqs. (2.13), (2.14), (2.15) and (2.16), we will 

yield a series of linear equations with coefficients A, B, C and D. These linear equations can be 

expressed in matrix form, K as shown below. 

  

 
 
 
 

    
     

                                               

                                                                    
 
 
 
 

 

  

 
 
 
 

    

When the determinant of matrix K is equals to 0, coefficients A, B, C and D will have multiple 

sets of solutions, in turn giving us a set of solutions for the minimum compressive stress P 

required for buckling. In other words, when the determinant of matrix K = 0, we can obtain the 

boundary between stable configuration and unstable configuration (buckling), as shown in the 

stability curve in Fig. 2-2 [2]. The curve is independent on of values of l and h and only varies 

with the Poisson’s ratio. 
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Fig. 2-2 Stability Diagram at Poisson’s ratio =0.5, T.Mora [7]. 

Pc is the minimum compressive stress required for the buckling to occur and corresponding 

wavelength, qc is obtained.  

The results obtained from the stability diagram shall be used to validate the results from FEM 

analysis in the Chapter 2.3. 
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2 . 3  Finite element analysis of 1 Layer Model  

2 . 3 . 1  Description of model schematics 

Next FEM simulation is conducted and the results are compared with the theoretical equation to 

validate the suitability of the simulation models. The relationship between the width to height 

ratio h/l, the buckling stress σcritical and the relationship between is h/l and λ will be studied. 

However, prior to that, understanding how the total length of the model, L affects σcritical and λ 

will be crucial in setting the guidelines for when deciding the model schematics.   

The 1 layer model created and the analysis conditions are shown in Fig. 2-3 and Table 2-1 

respectively below. 
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Fig. 2-3 Full 1 layer thin plate model. 

 

Fig. 2-4 Up close of one end of 1 layer model. 

 

 

Fig. 2-5 Single element depicting intrinsic 

stress applies via inistate command. 
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Table 2-1 Finite Element Analysis Conditions. 

Analysis software Ansys 13.0 

Units [nm][N] 

Number of nodes 114165 

Number of elements 20000 

Element type 20 Node Solid 186 (Inistate Stress Compatible)  

Young’s modulus 80GPa 

Poisson’s ratio 0.3 

Type of analysis Static/Eigen buckling 

Boundary conditions At Y=0, the model area is displacement X,Y, Z 

bounded 

Force Conditions 
1000MPa Compressive stress on all elements  

(see Fig. 2-6) 

 

Upon application of intrinsic stress via the inistate command, static analysis considering the 

pre-stress effects is first conducted, followed by eigenbuckling analysis. Eigenbuckling analysis 

increases the unit stress applied in incremental sub steps till buckling occurs. σcritical and λ for the 

first buckling mode is then recorded. An example of the first buckling mode is shown in Fig. 2-6. 

One wavelength is the distance between 2 peaks/crests from the top view. Only the waves in 
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generated from the middle of the model, which exhibit constant wavelengths and amplitude, are 

measured as shown in Fig. 2-7. This is because the waves originating from the centre are the 

least affected by the boundary conditions both ends. The amplitudes of the wavelengths cannot 

be measured during eigenbuckling analysis as they are magnified multiple times and are not 

accurate. 

 

Fig. 2-6 First buckling mode of 1 layer model at h/l     . 

 

 

Fig. 2-7 Top view of buckled 1 layer model.  



24 

 

2 . 3 . 2  Assessment of the length for models  

In semiconductors, the length of the plate, L is in order of microns while the height is in the 

order of nanometers. L is approximately close to a thousand times longer than its height. In 

theory, it is assumed that L is infinitely long. While it is ideal to conduct FEM simulation based 

on the full model length, this is difficult due to limitations in the software such as node limits 

and calculation time. If L is too short, the wavelength would be forced to be a multiple of L. 

Therefore, it is important to study the relationship that L and l have with σcritical and λ to optimize 

the L for thin plate models to be studied. L is first divided by l to make it dimensionless and the 

relationship between L/l ,σcritical and λ is studied. 

The results of the relationship are shown below in Fig. 2-8. 

 

Fig. 2-8 Graph of σcritical and λ upon varying L/l. 

As seen in Fig. 2-9, a small increase in L/l at low values causes significant decrease in both the 
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σcritical and λ values. After L/l crosses 20, both values of σcritical and λ stabilize and remain 

constant even as L/l continues to increase. The L/l ratio of models to be studied in this research 

will be greater than 20 to ensure sufficient accuracy in modeling thin plate behavior. 

 

2 . 3 . 3  Comparison of simulation results with theoretical 

values at various width to height ratios 

As mentioned in Chapter 2.1, in order for the Föppl von Kármán equations to stand, the height 

of plate, l must be significantly larger than the width of the plate, h. In other words, h/l must be 

sufficiently small. The relationship of h/l with the difference between the simulation and 

theoretical values are studied as shown in Fig. 2-9. 

 
Fig. 2-9 Graph of difference between FEM and theoretical values of σcritical and λ at varying h/l. 
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As seen in Fig. 2-9, when h/l are increases beyond 0.08, both the percentage difference between 

FEM values and theoretical values for σcritical and λ increases. In particularly, the percentage 

difference for σcritical increased significantly with h/l. However when h/l equals to 0.08 and 

below, the percentage difference between FEM values and theoretical values is less than 1%. 

This is because as h/l decreases, assumptions for the Föppl von Kármán equations hold true and 

the FEM simulation results approach the theoretical results. As such, we can consider the FEM 

simulation results to be applicable at low values of h/l. 

In conclusion, the FEM model created was able to predict σcritical and λ that are consistent with 

the theoretical values provided L/h is above 20. This also shows that FEM modeling might be 

sufficient to predict σcritical and λ at higher h/l ratios where the theoretical equations are not 

applicable. 
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C h a p t e r  3 .  The 2 Layer Thin Plate Model 
 

3 . 1  Introduction 

The Föppl von Kármán equations can be modified to be applicable to the 2 layer model. 

However, the 2 layer model involves multiple correlated variables and numerical analysis must 

be conducted to verify the equation. At the current point of this research, very little past work 

has been done to apply the Föppl von Kármán equations to 2 layer plates.  

This part of the research aims to focus on the FEM modeling aspect to study the characteristics 

of the buckling mechanism in order to provide insights to the establishment of the 2 layer 

theoretical equation. 

Chapter 3.2 covers the description of the FEM 2 layer models and Chapter 3.3 will touch on the 

factors affecting σcritical and λ in 2 layer models. 
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3 . 2  Finite Element Analysis of 2 Layer Model 

3 . 2 . 1  Description of model schematics 

The general schematics of the 2 layer model to be analyzed are shown below in Fig. 3-1. 

The measurement of σcritical and λ is the same as that of 1 layer models described in Chapter 

2.3.1.  

 
Fig. 3-1 Full 2 layer thin plate model. 
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Fig. 3-2 Up close of one end of 2 layer model. 

 

Table 3-1 FEM analysis conditions. 

Analysis software Ansys 13.0 

Units [nm][N] 

Number of nodes 95639 

Number of elements 18000 

Element type 20 Node Solid 186 (Inistate Stress compatible)  

Young’s modulus of mask 122Gpa 

Poisson’s Ratio of mask 0.3 

Young’s modulus of pattern 12.8Gpa 

Poisson’s Ratio of pattern 0.3 

Type of analysis Static/Eigenbuckling 

Boundary conditions At Y=0, Displacement X,Y,Z bounded 

Force conditions 1000MPa Compressive stress on Mask elements 

(shaded purple in Fig. 3-2)  
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3 . 2 . 2  Inconsistency of initial FEM results with experimental 

results 

The experimental data used in this research was provided by Toshiba Corporate Engineering 

Manufacturing Center and recorded as shown in Table 3-2. Eight 2 layer models with varying 

total height l, mask height lm and width h were patterned and fabricated. After fabrication, l, lm, 

h and λ were measured from scanning electron microscope photographs.  

 

Fig. 3-3 Material Properties of 2 layer Model in experiments. 

The residual stress present in the 2 layer plate is measured in a separate thin film experiment. A 

layer of thin film (mask) is deposited to a flat substrate (pattern) of uniform thickness. The 

substrate is initially stress-free but upon being bonded, residual stress is generated through the 

mechanisms mentioned in Chapter 1.1.3. The material properties of the substrate and thin film 

are known and by measuring the curvature of the substrate, the amount of stress generated can 
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be calculated using Stoney’s equation, a formula relating curvature and stress [8]. The amount 

of stress recorded for this experiment is 927 MPa (compressive stress). 

FEM analysis of 2 layer models based on the experimental data of l, lm and h were conducted 

and the results for λ and σcritical were compared to the experimental results as shown below in 

Table 3-2. 

Table 3-2 Comparison of experimental results and simulation results. 

lp 

(nm) 

lm 

(nm) 

l 

(nm) 

h 

(nm) 

λ Exp 

(nm) 

λ FEM 

(nm) 

Difference 

λ (%) 

σExp  

(MPa) 

σ FEM 

(MPa) 

Difference 

σ (%) 

171 31 202 25 540 973  80.2 927 1016  +9.6 

165 33 198 28 740 960  29.7 927 1286  +38.7 

249 24 273 26 552 1240  124.6 927 774  -16.5 

261 28 289 29 776 1327  71.0 927 825  -11.0 

85 30 115 23 447 580  29.8 927 2159  +132.8 

134 35 169 23 463 827  78.6 927 1137  +22.6 

256 26 282 23 415 1280  208.4 927 572  -38.3 

265 25 290 28 630 1313  108.5 927 805  -13.2 

 

As seen in Table 3-2, there is a huge difference between FEM results and the experimental 

results for both λ and σ. For λ there are cases where more than a 100% difference exists 

between the experimental and FEM values. For the values of σ, some of the FEM values 

exceeded that of the experimental values, indicating that buckling should not have even taken 

place. We are also unable to draw any trends or conclusions from the results as multiple 

variables are being changed at any one time. In order to draw conclusions on whether this 

difference is due to wrong FEM analyzing methods or experimental error, we must first 

htanaka
長方形
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understand the buckling phenomenon in 2 layer models, specifically, which variables affect 

σcritical and λ. 
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3 . 2 . 3  Discussion of areas of interest and governing factors 

As the etching dept l (height of semiconductor element) increases, the structural changes can be 

classified into the two following variables: 

1) The width to height ratio h/l decreases during etching as l increases and h remains constant; 

2) The mask height to total height ratio lm/l decreases as lm remains constant while l increases 

Fig. 3-4 below depicts the changes the variables undergo during the etching process. These two 

variables h/l and lm/l are considered independent from one another and FEM simulation is 

conducted to study their relationship with σcritical and λ. Precaution was given to ensure that the 

range of values of h/l and lm/l selected for FEM simulation encompasses the range of 

experimental values shown in Table 3-3.  

Fig. 3-4 Change in variables during semiconductor etching process. 
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Table 3-3 h/l and lm/l of experimental results. 

lp (nm) lm (nm) l (nm) h (nm) h/l lm/l 

171 31 202 25 0.12  0.15  

165 33 198 28 0.14  0.17  

249 24 273 26 0.10  0.09  

261 28 289 29 0.10  0.10  

85 30 115 23 0.20  0.26  

134 35 169 23 0.14  0.21  

256 26 282 23 0.08  0.09  

265 25 290 28 0.10  0.09  
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3 . 3  Factors affecting λ and σcritical 

3 . 3 . 1  Relationship of λ and σcritical with respect to h 

h is varied while keeping l and lm/l constant. The relationships are plotted in Fig. 3-5 shown 

below. 

 

Fig. 3-5 Graph of λ and σcritical upon varying h. 

λ and h: According to Fig. 3-5, λ remains constant despite increasing values of h This shows 

that λ is independent of h, but it is still inconclusive to whether λ is independent of h/l. In the 

next sub chapter, l will be varied and h will be kept constant. 

σcritical and h: According to Fig. 3-5, σcritical increases significantly when h increases. An 

increase in h increases the overall bending stiffness of the model, resulting in a higher σcritical. A 

second order polynomial equation can be approximated from the σcritical and h curve, showing 

σ = 1.6823h2 + 23.793h - 143.81 

0 

200 

400 

600 

800 

1000 

1200 

700 

750 

800 

850 

900 

12 14 16 18 20 

σ
 (

M
P

a
) 

λ
 (

n
m

) 

h (nm) 

λ 

σ 

Approx Eq. of σ 

Constants 

l = 170nm 

lm/l = 0.118 



36 

 

that σcritical is proportional to the square of h. According to Eq. (2.8), σcritical should vary 

proportionally to the square of h/l. As l is kept constant in the simulation, it is conclusive that 

the FEM simulation results concur with the Föppl von Kármán equations for the 1 layer model.  

 

3 . 3 . 2  Relationship of λ and σcritical with respect to l  

In this next study, l is varied (while keeping lm/l and h constant) and its relationship with λ and 

σcritical was studied. The relationships are plotted in Fig. 3-6 shown below. 

Fig. 3-6 Graph of λ and σcritical upon varying l. 

λ and l: According to Fig. 3-6, an increase in l causes λ to increase linearly. Combing this data 

with those in Fig. 3-4, we can conclude that λ is independent of h and has a linear relationship 

with l. Referring to Eq. (2.10), this concurs with the Föppl von Kármán equations for the one 
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layer model. 

σcritical and l: According to Fig. 3-6, σcritical increases significantly when l increases. As the mask 

layer at the top of the model contributes the main compressive force, an increase in l causes this 

compressive force to be located further away from the bounded region. This result in an overall 

lowered bending stiffness of the model and thus lowers σcritical.  

A second order polynomial equation can be approximated from the σcritical and l curve, showing 

that σcritical is inversely proportional to the square of l. According to Eq. (2.8), σcritical should vary 

proportionally to the square of h/l. Hence, it is conclusive that the FEM simulation results 

concur with the Föppl von Kármán equations for the 1 layer model. 
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3 . 3 . 3  Relationship of λ and σcritical with respect to lm/l 

Next, lm/l was varied (while keeping h/l constant) and its relationship with λ and σcritical was 

studied. The relationships are plotted in Fig. 3-6 shown below. 

 

 

Fig. 3-7 Graph of λ and σcritical upon varying lm/l. 

λ and lm/l: In general, an increase in l increases causes λ to increase. The rate of increase of λ 

appears to slow down as lm/l reaches the values above 0.250. 

σcritical and lm/l: Initially, σcritical decreases significantly when lm/l increases. However, similar to 

λ, the rate of decrease seems to slow down as lm/l reaches the values above 0.250. As the mask 

layer contributes the primary source of compressive force, when the ratio of    to   is 

increased, the amount of compressive force per unit length is increased. A greater compressive 

force would result in a lower σcritical.  

500 

600 

700 

800 

900 

1000 

1100 

700 

720 

740 

760 

780 

800 

820 

840 

860 

0.000  0.050  0.100  0.150  0.200  0.250  0.300  0.350  
σ

 (
M

P
a

) 

λ
 (

n
m

) 

lm/l 

λ 

σ 

Constants 

h/l = 0.10 



39 

 

C h a p t e r  4 .  Comparison of experimental and 

FEM results 

4 . 1  Introduction 

As we know, the experimental results and FEM simulation results greatly differed as shown in 

Table 3-2. One of the possible reasons is that buckling has occurred at a value of l that is lower 

than that of l recorded in the experimental results. The experimental values of l were only 

recorded after the whole fabrication process was finished. This means that there is a possibility 

that buckling has occurred at a lower value of l earlier during the etching process. If this is the 

case, the simulation of the model based on a larger value of l would naturally yield incorrect 

results. Let us refer to the value of l that buckling occurs at as lcritical and the value of l that has 

been recorded in the experiment as lfinal. This chapter serves to explore the procedures and 

limitation involved in finding lcritical.  

 
Fig. 4-1 Figure showing the etching process at which when lcritical occurs. 
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4 . 2  Finding the values lcritical 

4 . 2 . 1  Relationship between λ/l and lm/l 

As we have seen in Chapter 3.4, λ varies linearly with l and is independent of h. By dividing λ 

with l, we arrive at a dimensionless variable, λ/l. Regardless of the values of h and l, a constant 

relationship between λ/l and lm/l should exist. 

FEM simulations of multiple values of h/l were taken and the relationship between λ/l and lm/l is 

plotted as shown in Fig. 4-2 below. Assuming that the model is not beyond that of a thin plate, 

the results concur that there exists a constant relationship between λ/l and lm/l.  

 

Fig. 4-2 Graph of relationship between λ/l and lm/l at various h/l. 
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Next, the experimental values of λ/l and lm/l were plotted on the same axes with the results from 

FEM in Fig. 4-3 below. It can be observed that the experimental results exhibit the same trend 

as the FEM results but at a lower value of λ/l and lm/l. This affirms our suspicion that the 

buckling occurs at a lower value than the lfinal. If the values of l in the experimental results are 

smaller than lfinal, λ/l and lm/l of the experimental results will increase and may approach values 

obtained from FEM. 

 

Fig. 4-3 Graph of relationship between λ/l and lm/l for experimental and Ansys (FEM) results. 
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4 . 2 . 2  Calculating lcritical from λ and lm relationships 

Given the constant relationship between λ/l and lm/l, the next step is to find an equation relating 

λ, lm and l. The average values of λ/l at different width to height ratios are taken and plotted 

against lm/l. A fifth order polynomial equation, Eq. (4.1) can then be approximated from the 

curve within the range of (0.05< lm/l <0.42). 
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          (4.1) 

Where C1 to C6 are coefficients of the approximated equation. 

Eq. (4.1) can be rearranged to give the following form below. 

    
        λ        

        
        

       
         (4.2) 

Values of lm and λ are substituted into Eq. (4.2) and the Newton-raphson method is used predict 

the values of lcritical.  

 
Fig. 4-4 Graph of average λ/l against lm/l with error bars. 
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4 . 2 . 3  Discussion of results for lcritical obtained from l (lm, λ) 

Next, FEM simulations of models with values of lcritical were conducted in order to confirm their 

accuracy. The results of the simulation are shown below in Table 4-1.  

Table 4-1 Predicted values of lcritical and the corresponding σcritical. 

lm  

(nm) 

h  

(nm) 

lfinal  

(nm) 

lcritical  

(nm) 

λexp  

(nm) 

λFEM  

(nm) 

σcritical  

(MPa) 

31.0  25.0  202.0  109.6  540  560  2685  

33.0  28.0  198.0  151.7  740  760  1931  

24.0  26.0  273.0  113.3  552  570  2794  

28.0  29.0  289.0  160.8  776  797  1934  

30.0  23.0  115.0  90.5  447  465  3197  

35.0  23.0  169.0  93.8  463  480  3028  

26.0  23.0  282.0  84.1  415  435  3602  

25.0  28.0  290.0  129.9  630  650  2558  

 

The values of λFEM were close to that of λexp, however the FEM values of σcritical were 

significantly higher than the amount of stress present in the mask layer during the experiment. 

As mentioned earlier in Chapter 3.1, the amount of stress recorded in the mask layer during the 

experiments is 927MPa. Most of these results are at least 2-3 times larger than this value, 

meaning that based on these values of lcritical, the buckling should not have occurred in the 

experiments. 

One of the possible reason to explain the why the values of σcritical obtained are significantly 

greater than the amount of stress recorded in the experiment is that λexp is not the wavelength at 
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which buckling occurs. In other words, the wavelength does not remain constant as the etching 

depth is increased from lcritical to lfinal. As we substituted this value of λexp into Eq. (4.2), the 

values of lcritical obtained would be inaccurate. 

Assuming that this is true and λfinal (wavelength at lfinal) is not equals to the λcritical (wavelength at 

point of buckling), we need to affirm this by finding lcritical from the relationship between σcritical, 

lm and l.  
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4 . 2 . 4  Calculating lcritical from σcritical and lm 

In this sub chapter, we shall attempt to find the value of lcritical from the relationship between 

σcritical, lm and l. Similar to what we did for λ, we can obtain this equation in two ways: 1) Making 

σcritical dimensionless variable that is unaffected by h/l or lm/l and then approximating the 

equation; 2) finding the function of the surface in a 3D scatter plot of σcritical, lm/l and h/l.  

As we can see from the 3D surface graph below in Fig. 4-5, the relationship between σcritical, lm 

and l is complex and unlike λ which can be made dimensionless easily (λ is proportional to l), 

σcritical, does not exhibit any linear relationship with any of the variables. As such, we adopted 

method 2 in trying to find the governing equation.  

 

Fig. 4-5 3D surface graph of σcritical, lm/l and h/l. 
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Method 2 involves fitting the data into a function and there exists many different ways to do so. 

In order to keep things simple, the least squared regression fitting was used to summarize the 

relationship between lm/l and h/l. The least squared method creates a polynomial function where 

the sum of the squares of the residuals (difference between observed value and predicted value) 

is kept at its minimum [9]. The polynomial function created will take the form shown below in 

Eq. (5.1).  

   
 

 
 
  
 
      

 

 
    

  
 
    

 

 
 
 

   
  
 
 
 

   
 

 
  

  
 
   

where A, B, C, D, E and F are coefficients 

(5.1) 

We can obtain the values of lcritical by substituting in the experimental values of lm, h and the σ 

(927MPa) into Eq. (5.1) and solving for l. 

 

4 . 2 . 5  Discussion of results of obtained from σ (lm, h, l) 

Table 4-2 Predicted values of lcritical and the corresponding λcritical. 

lm 

(nm) 

h 

(nm) 

lfinal 

(nm) 

lcritical 

(nm) 
lcritical/lfinal 

λfinal 

(nm) 

31 25 202.0 227.3 1.13 540.0 

33 28 198.0 256.7 1.30 740.0 

24 26 273.0 247.4 0.91 552.0 

28 29 289.0 274.2 0.95 776.0 

30 23 115.0 207.3 1.80 447.0 

35 23 169.0 201.9 1.19 463.0 

26 23 282.0 212.3 0.75 415.0 

25 28 290.0 267.7 0.92 630.0 
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As seen in Table 4-2, the values of lcritical are significantly larger than that of lfinal. As such, we are 

unable to confirm our suspicions that λfinal is not equals to the λcritical.  

By manipulating Eq. (5.1) and making l the subject, we can arrive at Eq. (5.2). 

           
                   

      σ         
       

    σ 
 (5.2) 

We can see that lcritical is proportional to 
 

 σ
. A decrease in values of h or an increase of σ could 

have caused the values of lcritical to be greater than it should be. 

 

Some of the possible reasons of why the experimental data does not match the simulation data 

are as follows: 

1) There exist initial imperfections in the structure. According to experimental results, there is 

a 2-3nm variation on each end of the width along the whole length of the semiconductor 

element. That results in a total of a 4-6nm variation for h when both ends are considered. 

The experimental values of h recorded are the average width measured where the mask and 

pattern meets. However, the sample size is small and the deviation is large. A difference in 

5nm would account for close to a 20% difference in the experimental values of h recorded 

in Table 4-2. According to Eq. (5.2), lcritical is proportional to h and a 20% decrease in h 

would also result in a 20% decrease in the lcritical calculated. As such, there is a need to 

increase the number of samples for the width to ensure a more accurate value of lcritical.  
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2) The mask layer (amorphous silicon) could have undergone oxidation during the fabrication 

process resulting in a greater stress than 927MPa. According to Eq. (5.2), lcritical is inversely 

proportional to the root of σ and an increase in σ would decrease lcritical. This effect is 

however considered negligible. 

3) Through the process of etching, h does not remain constant at various etching depths. 

Possibly due to existing structural imperfections or the reflection of gas molecules during 

the etching process causing the walls of the element are eroded away. h is both a function of 

the current etching depth, lcurrent and its relative depth l as seen in Fig. 4-6. As h changes, this 

would definitely affect the stress σ and depth at which it buckles lcritical.  

  

Fig. 4-6 Change in h according to etching depth l. 
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Chapter  5 .  Conclusion 
 

5 . 1  Summary of results 

In aim of improving the framework for the design of semiconductor nanoscale structures to 

prevent buckling phenomenon, this research has made clear the characteristics of the buckling 

mechanism in 2 layer thin plates and the factors affecting the buckling wavelength and stress 

through FEM simulation.  

The stress at which buckling occurs, σcritical is inversely proportional to the (h/l)
 2
 and decreases 

non-linearly to lm/l. Through data fitting between the range of values where 0.08<h/l<0.11 and 

0.05<lm/l<0.41, a model capable of predicting the length at which buckling occurs, lcritical given 

that the stress present in the mask layer, lm and the h is known. Vice versa, if lcritical is known, the 

stress present in the mask layer can be predicted. 

The wavelength λ is independent of h, linearly proportional to l and increases non-linearly to an 

increasing lm/l. As such, by making λ dimensionless in the form of λ/l, a fixed relationship 

between λ/l and lm/l, independent of values of h/l can be obtained. From this constant 

relationship, we are able to obtain a model that is able to predict lcritical given that the wavelength 

at which buckling occurs λcritical, lm and the h is known. Vice-versa, if lcritical is known, λcritical can 

be predicted. 
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From this two prediction models, given either λcritical or σcritical is known, we are able to predict 

the other unknown. 

 

Unfortunately, the experimental results were insufficient and the limitations of the current FEM 

modeling were made clear. More experimental results could be taken to correctly estimate the 

height, lateral shape, and wavelength of the element at the point of buckling.  
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5 . 2  Suggestions for future research 

1. Föppl von Kármán equation for 2 layer thin plates. 

The Föppl von Kármán equations can be modified to be applied on 2 layer models and the 

theoretical results can be compared to the experimental results. 

2. Additional experiments need to be conducted and the current FEM results should be 

evaluated once more as the current experimental data does not accurately estimate the 

height, lateral shape, and wavelength of the element at the point of buckling. The additional 

experiments should be conducted where images captured are at different etching depth 

intervals.  

3. FEM modeling based on reducing pattern width at increasing etching heights.  

As mentioned in Chapter 4.2.5, the pattern width seems to be a function of the etching 

depth and the relative depth. New FEM modeling is required to find out how this change in 

pattern width affects the wavelength and buckling stress. 
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