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Understanding the plasticity and strength of crystalline materials
in terms of the dynamics of microscopic defects has been a goal of
materials research in the last 70 years. The size-dependent yield
stress observed in recent experiments of submicrometer metallic
pillars provides a unique opportunity to test our theoretical mod-
els, allowing the predictions from defect dynamics simulations to
be directly compared with mechanical strength measurements.
Although depletion of dislocations from submicrometer face-cen-
tered-cubic (FCC) pillars provides a plausible explanation of the
observed size-effect, we predict multiplication of dislocations in
body-centered-cubic (BCC) pillars through a series of molecular
dynamics and dislocation dynamics simulations. Under the com-
bined effects from the image stress and dislocation core structure,
a dislocation nucleated from the surface of a BCC pillar generates
one or more dislocations moving in the opposite direction before
it exits from the surface. The process is repeatable so that a single
nucleation event is able to produce a much larger amount of plastic
deformation than that in FCC pillars. This self-multiplication mech-
anism suggests a need for a different explanation of the size
dependence of yield stress in FCC and BCC pillars.

mechanical strength � plasticity

P lastic deformation of crystalline materials is mostly carried
out by the motion of dislocations, which self-organize into

complex structures at the micrometer scale (1–4). Hence, the
yield strength of a crystal can be modified by the interaction
between dislocations and other microscopic features with com-
parable length scales, such as the grain size in the Hall–Petch
effect (5–7) or the specimen size itself in the micro tensile and
compression experiments (8–12). Many models have been pro-
posed to explain the specimen size dependence of the yield stress
of these micropillars in the absence of an imposed strain gradient
(13–17).

The basic idea of the widely discussed ‘‘dislocation-starvation’’
model is that dislocations escape easily due to the small size of
the pillar, leaving it in a ‘‘dislocation-starved’’ state. Plastic
deformation thus requires a continuous supply of fresh disloca-
tions, such as by nucleation from the surface, which requires a
high stress. Recent in situ observations of Ni pillars under
compression support this picture (12).

The estimated critical stress required for dislocation nucle-
ation from the surface also shows a size dependence consistent
with experimental observations (14). In a competing model, the
pillar is not starved of dislocations; instead, repeated motion of
some dislocations around internal pinning points sustains the
plastic deformation rate (16, 18, 19). The size-dependent yield
stress is attributed to the dependence of the critical stress to
activate these single-arm Frank–Read sources on the dislocation
length, which scales with the diameter of the pillar.

The above controversy can be resolved only if we find the
answer to an even more fundamental question: How does a single
dislocation, once nucleated, move inside the micropillar? The
starvation model assumes the dislocation would quickly escape
from the pillar. The single-arm source model requires disloca-
tion junctions to provide internal pinning points. However, how
do the junctions form in the first place, given that they are

unlikely to exist in an undeformed micropillar? Although it is
very difficult to observe a single dislocation moving through the
pillar in situ, here, we show that the answer to the fundamental
question can be obtained from a series of computer simulations
based on the atomistic and continuum models of dislocations.
The answer turns out to depend on whether the micropillar is
composed of a face-centered-cubic (FCC) or body-centered-
cubic (BCC) crystal.

Fig. 1A shows the initial condition of a Molecular Dynamics
simulations of a BCC Molybdenum pillar with diameter D � 36
nm (see Materials and Methods). A mixed dislocation with
Burgers vector b � 1⁄2[1 1 1] is introduced on the (0 1 1�) glide
plane. Fig. 1 B–F are a sequence of simulation snapshots under
the uniaxial compression of �zz � �9 GPa and at temperature
T � 300 K. First, the dislocation quickly reorients itself along the
Burgers vector and becomes a pure screw dislocation (Fig. 1B),
making the subsequent dislocation behavior insensitive to initial
orientation. This is because in BCC metals, non-screw disloca-
tions move much faster than screw dislocations and quickly leave
the pillar. Interestingly, a cusp develops on the screw dislocation
as it moves forward (Fig. 1C). The cusp then evolves into a
dislocation loop (Fig. 1D). As the loop grows larger (Fig. 1E), the
two sides of the loop eventually leave the pillar, creating three
dislocation lines in the pillar (Fig. 1F). Two of these dislocations
have the same Burgers vector and move in the same direction as
the original dislocation, while the third dislocation has the
opposite Burgers vector and moves in the opposite direction. The
same mechanism can happen again to these three dislocations,
depending on the stress state and their positions. This simulation
suggests that a single nucleation event in a BCC pillar can trigger
dislocation activities for a prolonged period, leading to a large
amount of plastic deformation. As a result, a BCC micropillar is
unlikely to be in a ‘‘dislocation-starved’’ state. However, it
remains to be shown whether or not this conclusion is applicable
to microcompression experiments on pillars with much larger
diameters (300 to 700 nm) and lower applied stress (1 to 2 GPa).
To show that multiplication can occur at experimental stress and
diameters, we must first understand the multiplication process.

Analysis of the above MD simulation reveals the following
three necessary steps for the self-multiplication process. First,
the higher mobility of non-screw dislocations leads to a straight
screw dislocation inside the pillar. Second, the motion of the
screw dislocation in the pillar is controlled by single-kink nu-
cleation from the surface. In comparison, kink-pair nucleation
controls the motion of a screw dislocation in bulk BCC metals.
Third, the trajectories of the two surface nodes closely follow a
(1 2� 1) plane and a (2� 1 1) plane, respectively, as shown in Fig.
1G. There are three {1 1 0} planes and three {1 1 2} planes
intersecting the screw dislocation line and dislocation motion on
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both {1 1 0} and {1 1 2} planes has been observed in bulk BCC
metals. In our simulations, the plane on which a surface node
moves depends on stress, temperature and the empirical poten-
tial model. However, in all of our compression simulations that
cover a wide range of conditions, the two surface nodes always
choose to move on two different planes. Therefore, the two
surface nodes are nucleation sites for kinks on two different
planes. As these kinks move away from the surface, they
eventually meet inside the pillar and form a cusp (where the line
orientation changes abruptly). Further forward motion of the
two surface nodes turns the cusp into a loop and transforms the
original dislocation into three dislocations, similar to a Frank–
Read mechanism.

Why do the two surface nodes move on two different planes?
It is natural to expect that this is caused by the difference in the
driving force on the dislocation line, which is proportional to the
local stress, near the two surface nodes. This difference must
come from the self-stress of the dislocation since the applied
stress field is uniform. To test this hypothesis, we compute the
Peach–Koehler force on the dislocation due to its own stress field
in an elastic cylinder, using the dislocation dynamics model (see
Materials and Methods). For simplicity, we consider a straight
screw dislocation that goes through the center of the cylinder, as
shown in Fig. 2A. Because a straight screw dislocation in an
infinite isotropic elastic medium exerts no force on itself, only
the image stress of the cylinder surface produces a force on the
dislocation. This image force, plotted in Fig. 2B, is contained
within the vertical (1 1� 0) plane and is antisymmetric along the
dislocation line, pointing upward near one surface node and
downward near the other. The direction of the image force is
consistent with the choices of the slip planes of the two surface
nodes shown in Fig. 1G. The opposite direction of the image force
at two surface nodes also has a simple interpretation: The dislo-
cation line can reduce its elastic energy by reducing its length, which
requires it to rotate away from the [1 1 1] orientation. Therefore,
the self-multiplication mechanism in BCC metal pillars has a simple
geometric origin. It is interesting to note that non-planar motion of
screw dislocations is known to cause debris formation in bulk BCC
metals (20). Here, we show that the image stress, which is generally
believed to accelerate dislocation‘s escape, amplifies this effect,
promotes dislocation multiplication, and hence prolongs the dislo-
cation’s stay inside BCC pillars.

The same geometric effect also exists in FCC pillars, that is,
a screw dislocation with a Burgers vector b � 1⁄2[0 1 1] passing

through the origin has image forces out of the (1 1� 1) slip plane.
However, our MD simulations on both gold and aluminum show
that the dislocation does not self-replicate in FCC pillars, even if we
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Fig. 1. The dislocation multiplication mechanism as observed in molybdenum. (A) Geometry of initial condition of MD simulation of dislocation motion. A
mixed-dislocation with Burgers vector b � 1⁄2[1 1 1] is introduced on the (0 1 1� ) glide plane. (B–F) Snapshot of MD simulation (top view). Only atoms whose central
symmetry parameter (21) are sufficiently different from that of a perfect crystal are plotted, showing the dislocation core and cylinder surface. The arrows in
E and F indicate the direction of dislocation motion. (G) Schematics of the 3D geometry of the dislocation line in E, which contains a loop.
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Fig. 2. The image force on a screw dislocation in the center of a pillar. (A) A screw
dislocation passing through the center of a BCC Mo nanopillar with D � 36 nm.
Arrowsillustratetheimageforceduetothecylindersurface.(B) Imageforce(perunit
length) along the [1� 1 2] direction on the dislocation as a function of position.

Weinberger and Cai PNAS � September 23, 2008 � vol. 105 � no. 38 � 14305

EN
G

IN
EE

RI
N

G



initialize it to be a perfect straight screw dislocation at the center of
the cylinder. As shown in Fig. 3, the main reason is the spontaneous
dissociation of the dislocation on the (1 1� 1) slip plane into two
partial dislocations bounding a stacking fault. The resulting planar
structure of the dislocation core confines the motion of the entire
dislocation onto the same (1 1� 1) plane. Furthermore, the disloca-
tion mobility of screw and edge components is not very different in
FCC metals. Hence, it is not very likely to find a long straight screw
dislocation in FCC pillars in the first place. Dislocations in FCC
metals are also highly mobile. Their motion does not require kink
mechanism and is less likely to be dominated by the surface nodes.
All these effects reduce the likelihood of the self-multiplication
mechanism in FCC pillars. However, self-multiplication may occur
in iridium, which has an exceptionally high stacking energy and a
non-planar core for screw dislocations (22).

Our MD simulations also show that the dislocation behavior in
BCC pillars depends on the magnitude of the compressive stress. In
MD simulations starting with a straight screw dislocation at the
center of the BCC pillar, a cusp always forms (we have performed
MD simulation with axial stress as low as 1 GPa), but this does not
always lead to multiplication. There exists a critical stress, �c, below
which the cusp eventually drifts out of the cylinder, straightening
out the dislocation without forming multiple dislocations, as shown
in Fig. 4. For the Mo pillar with diameter D � 36 nm, the critical
stress is approximately 5.5 GPa, which greatly exceeds the applied
stress in the microcompression experiments (on the order of 1 GPa)
(24, 25). However, our MD simulations also predict a rapid
decrease of �c with increasing pillar diameter. In addition, the pillar
diameters in the microcompression experiments (300-700 nm) are
much larger than those in our MD simulations. However, it is
important to know whether the critical stress �c for pillar diameters
in experiments is lower than the observed flow stress.

To answer this question, we resort to the dislocation dynamics
(DD) again. To model the dislocation behavior observed in the MD
simulations, the dislocation line is divided into two sections, which
are constrained on (1 2� 1) and (2� 1 1) planes, respectively, as shown

in Fig. 1G. The dislocation line is discretized into straight segments
connecting a set of nodes. The motion of the nodes are confined
within the x� � y� or x� � y� plane, depending on which section they
belong to (see Materials and Methods). Although the velocities of
the two surface nodes in the y� (or y�) direction are proportional to
the local Peach–Koehler force, the y� � (or y�) coordinate of the
interior nodes are constrained to be a fixed fraction of that of the
corresponding surface node. However, the interior nodes are free
to adjust their location along the x� axis. This mimics the dominance
of a surface node on dislocation mobility. Interestingly, with no
adjustable parameters, this simple DD model predicts a critical
stress of �c � 4.7 GPa for D � 48 nm, very close to the MD
observation (4.5 GPa). The DD model also clarifies the origin of the
critical stress. If the applied stress is not large enough, the back stress
produced by the dislocation curvature can stop the forward motion
of the surface nodes before the cusp develops into a loop. When this
happens, the cusp has ample time to drift away from the center and
eventually escape the pillar. The critical stress at arbitrarily large
diameters can now be easily predicted by the DD model (Fig. 4A).
Both the MD and DD predictions can be fitted to a single
expression similar to the well known activation stress of a Frank–
Read source, �c(D) � A/D ln D/B, with A � 57.5 GPa and B � 0.835
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Fig. 3. Snapshots of dislocation motion in an FCC Au nanopillar of diameter
D � 36 nm under compressive stress of 500 MPa. The asymmetric shape of the
stacking fault is similar to an earlier study of dislocations in thin films (23).
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Fig. 4. The critical stress for loop formation and its effects on dislocation
behavior. (A) Critical stress for loop formation in BCC pillar. Diamonds, MD
predictions; circles, DD predictions; solid line, fitted curve �c(D) � A/D ln D/B
with A � 57.5 GPa and B � 0.835 nm. (B) Cusp escaping the pillar when applied
stress is 5 GPa, lower than the critical stress. (C) Dislocation avalanche when the
applied stress is 9 GPa, 60% higher than the critical stress.
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nm. At experimental diameters, the predicted critical stress is well
below the observed flow stress (25).

The dislocation self-multiplication mechanism in BCC pillars has
the following consequences that offer an opportunity for its exper-
imental verification, and new interpretations to some existing
observations. First, through this mechanism, a single nucleation
event is able to populate the micropillar with dislocations for a long
time, during which another dislocation can be nucleated on a
different slip system. This promotes the formation of dislocation
junctions and single-arm Frank–Read sources in BCC micropillars,
as postulated in some theoretical models to explain the size effect.
For this reason, there should be more dislocations in a BCC pillar
than an FCC pillar of the same diameter, which may be observed
by transmission electron microscopy. This is consistent with the
recently reported difference in the stress-strain responses of mo-
lybdenum and gold micropillars (25). Second, when the applied
stress is much higher than the critical stress, both MD and DD
simulations predict that each of the three dislocations created from
the original dislocation can create more dislocations before they exit
the pillar. It leads to an avalanche effect where a single nucleation
event is sufficient to provide all the dislocations needed for a large
plastic deformation at a high strain rate, as shown in Fig. 4C. This
provides a plausible explanation for the strain-softening effect
observed in recent compression experiments on BCC pillars that
are initially free of surface defects (11). These pillars deform purely
elastically up to 10 GPa, at which point they suddenly collapse.
Third, the size-dependent critical stress for dislocation multiplica-
tion is expected to be a lower bound to the observed yield stress,
because other hardening mechanisms (e.g., junction formation) can
occur once the self-multiplication mechanism builds up a suffi-
ciently high dislocation density.

In summary, we discovered a new mechanism in which a single
dislocation can multiply itself repeatedly in a BCC micropillar
but not in an FCC micropillar. The mechanism is the combined
result of both the surface-induced image stress and surface-
dominated dislocation mobility at small scales. This discovery
points to the necessity of different interpretations for the
size-dependent yield stress on FCC and BCC micropillars. It also

points to the importance of carefully accounting for surface
effects on both the stress field and dislocation mobility in the
dislocation dynamics modeling of plasticity at the microscale.

Materials and Methods
Molecular Dynamics. Molecular dynamics (MD) simulations were carried out
using LAMMPS (26) and MD�� (available at http://micro.stanford.edu). The
molybdenum nanopillars are modeled by the Finnis–Sinclair (FS) potential (27,
28). Dislocation self-multiplication are also observed in simulations using the
modified-embedded-atom-method (MEAM) model for molybdenum and the FS
potential for tantalum. The gold and aluminum nanopillars are modeled by the
Foiles (29) and the Mishin (30) Embedded atom method (EAM) potentials, re-
spectively. All nanopillars are aligned along the z � [0 0 1] direction where
periodicboundaryconditionsareapplied.MDsimulationswerecarriedoutunder
the N�T ensemble with temperature T � 300 K and different axial stresses �zz,
using the velocity Verlet integrator and a time step of �t � 1 fs. To mimic a
nucleation event, a straight dislocation with various orientations and locations is
introduced in the nanopillars as the initial condition, with Burgers vector b �
1⁄2[1 1 1] formolybdenumandtantalumandb� 1⁄2[0 1 1] forgoldandaluminum.
The dislocation motion is observed by analyzing the trajectory of the atoms.

Dislocation Dynamics. Dislocation Dynamics (DD) simulations were performed
using the ParaDiS (http://paradis.stanford.edu) program (31–34), modified to
include the image stress due to the cylindrical free surface (35). Molybdenum
is modeled as an isotropic medium with shear modulus � � 123 GPa and
Poisson’s ratio � � 0.305. The dislocation core radius is rc � b. The dislocations
are described by two continuous curves lying on (12�1) and (2� 1 1) planes, as
illustrated in Fig. 4G Each curve is parameterized by a set of interior nodes that
are equally spaced in the direction (y� or y�) perpendicular to the Burgers
vector and a straight segment connecting to the surface node. The mobility of
the surface nodes (along y� or y� directions) is 5.6 � 102 Pa�1�s�1, and is 5.6 �

104 Pa�1�s�1 for the interior nodes (along x� direction). The magnitude of the
critical stress for the self-multiplication mechanism is insensitive to the nu-
merical values of the mobility parameters.
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