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Internal Displacement and Elastic Properties
of the Silicon Tersoff Model*

Satoshi IZUMI** and Shinsuke SAKAI**

Martin’s method, which is used to determine the internal displacement of atomic
systems and elastic constants, is applied to the Tersoff potential. The potential is
modified to provide an accurate description of the high-temperature elastic properties
of silicon. The elastic constants of crystalline silicon were investigated at both low
and high temperatures. Results were verified using the statistical thermodynamic
method, i.e., ‘Fluctuation formula’. It was found that values of elastic constants and
the influence of the internal displacement are valid. However, at high temperatures the
gap becomes larger owing to the thermal fluctuation. Since the convergence of the
Martin’s method is faster by about two orders, it is the more effective method. It was
also found that the fluctuation term includes the effects of the internal displacement

.and thermal fluctuation.
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1. Introduction

In the recent development of semiconductors, the
size of the evaluation region has reached several score
nanometers and is approaching the atomic level. This
has strongly necessitated a process simulation for
such a nano-scale region. However, the validity and
limits of the present continuum-based simulation are
remained under debate.

Molecular dynamics, in which the material is not
treated as a homogeneous continuum body but as an
inhomogeneous atomic ensemble, seems to be a very
powerful tool for investigating the difference between
macro (continuum body) and micro (atoms) scales.
Especially, the calculation of the elastic constants of
atomic system is thought to be important. Much
success have been achieved in the prediction of the
elastic properties of immeasurable materials and in-
homogeneous structures such as grain boundaries®
and analysis of the stability of atomic systems and
fractures®.
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The difficult aspect of calculating elastic con-
stants using molecular dynamics method concerns the
problem of internal displacement.' In the conventional
linear elastic theory, the displacements of material
points become linear to deformation. However, in
actuality, atomic displacements do not generally
become linear to deformation. Each atom moves to
its most stable point in response to the deformation in
an atomic system. Such a difference between the
displacement of continuum body approximation and
that of atoms is referred as internal displacement
(Fig.1). Since internal displacement appears in the
diamond lattice or in inhomogeneous structures such
as grain boundaries and surfaces, such influence must
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Fig. 1 Internal displacement of the atomic systems
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be taken into account in the definition of elastic
constants, which adds the complexity of the problem.

Several methods have been proposed to deal with

these problems. These methods include that which
actually deforms the system® and a method that uses
the fluctuation formula of the statistical ensemble™.
However, many problems are yet to be solved. The
former method involves three problems. First, a
deformation calculation is needed for each component
of the elastic constants. Second, it cannot deal with
the crystal structures that structural transition causes
due to strain. Third, the slow convergence of the
strain of constant stress ensemble or the stress of the
constant volume ensemble leads to large measurement
errors. ‘
Ray and Pearson have formulated statistical ther-
modynamics methods®®, While the validity of the
result may be guaranteed, there are some limitations
in these methods. For example, they cannot be
applied to systems other than statistical ensembles
and cannot provide the local values around each atom.
Since such an application is limited to homogeneous
systems having periodic boundary condition, it is
difficult to effectively apply it to inhomogeneous sys-
tems. ‘ ‘
In this paper, we considered Martin’s method®,
which provides the internal displacement and elastic
constants of atomic systems, could resolve the above
problem. This method is applied to the Tersoff poten-
tial? suitable for the description of silicon which is an
indispensable material in the semiconductor field. We
selected the Tersoff potential since it is known to
express the properties of silicon very well by incorpo-
rating the bond angle and coordination dependence
that are characteristic in the covalent system and by
fitting energies to the ab-inito calculation. By this
method, the investigations of elastic constants and the
internal displacement at arbitrary inhomogeneous
systems such as grain boundaries”, amorphous struc-
tures, and crack tips are realized without applying
actual deformation.

In chapter 2, we describe the formulation of the
calculations of the elastic constants. In chapter 3, the
results of the application of the method to crystalline
silicon at low and high temperatures are shown. In
chapter 4, in a discussion of the results we compare
the results with those obtained by using the fluctuation
formula. The validity and efficacy of convergence are
discussed. Finally, in a comparison of the terms of
both methods, we discuss the physical meaning of the
fluctuation terms (statistical fluctuation in ‘phase
space). B
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2. The Method of Calculating Elastic Constants

We describe the definition of strain, internal dis-
placement, and elastic constants and their application
to the Tersoff potential.

2.1 Definition of the strain

Due to the existence of internal displacement,
defining strain through the use of atomic displacement
becomes impossible in the MD system. Therefore, the
averaged strain of the whole MD cell (with periodic
boundary) is defined for the molecular dynamics of a
solid system. The concept of the shape matrix of the
MD cell is used for the definition. The coordination of
the atoms is represented by a normalized form as Eq.
(1), where the shape of the unit cell is regarded as
parallelepiped (Fig. 2) with 3 edges of unit vectors a,
b, ¢. By using this concept, the system can be arbi-
trarily deformed only by changing the lattice matrix h
while fixing p.

rf=a:pf+ bips+ ciof=huof  (0< pf, 08, p§<1)

(1)
ax b.z' Cx I hlz ]’Lls

h= Ay by Cy | =— h21 haz s (2)

az bz Cz st hs2 s

The atomic coordination in the standard state (stress-
free state) is represented by r§=hoo§. By replacing
ho into h, the atomic coordination displaced by aver-
aged strain becomes r®=hpi. From both relation-
ships, it follows that r®=hhs'r§. Therefore, the
displacement gradient tensor can be defined by F=
hhy'. As a result, Green-Lagrange strain % can be
represented by Eq. (3) by using F,

=5 (F'F —I)=4(hi* Ghi' ), (G=h'R).
» (3)

- 2.2 Definition of the elastic constants (Martin’s
method) :

In the Molecular Dynamics method, the system
energy becomes the function of the included inter-
atomic distance. Martin® defined the elastic con-
stants by including the relative displacement (i.e. the
internal displacement) of each sublattice, in which the
displacement is linear to the deformation, into the

interatomic distance.
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Fig. 2 The defenition of MD cell

Series A, Vol. 47, No. 1, 2004



56

In general, several kinds of sublattices whose
deformation is homogeneous are contained in the
crystal. For example, the diamond structure has two
overlapped sublattices of a fcc structure. It can be
established that each atom belongs each sublattice.
We next define the relative displacement of each
sublattice. Expressing the representative point of
sublattice p as r?, the center of the gravity of sub-

lattices (1—#2) can be defined by R=p‘§1 r’. Since the

distance from the center of gravity can be represented
by d’=r’—R, the relative displacement vector
between sublattices can be defined as d?—d™ (d™
origin). The variation in the relative displacement
vector in response to the arbitrary deformation F
(deformation gradient tensor) can be represented by
the homogeneous deformation term (lst term of the
right-hand side of Eq.(4)) and the relative displace-
ment term of sublattice p from m (2nd term), where
the subscript 0 symbolizes the state before deforma-
tion, -

d?—d"=F(d{—d")+u”. (4)

If the atoms @ and 8 belong to the sublattice p(a)
and p(8) respectively, the distance between atom «
and £ can be easily written by

raﬁ:Fr()ﬂlﬁ+ uP(ﬂ)* up(a)' ( 5 )

Now the internal displacement vector is newly
defined by &*=F*u? as a rotational invariant variable.
By using this definition, the rotational invariant dis-
tance s“=(r*)'r* can be represented as follows :

aﬂ_(ro /f) (27]+I) r&lﬁ_{_z(sﬂ(ﬂ)_ 61’(«)) raﬁ
_1_(517(/?)_ EP(a))(277+I) 1(€P(ﬂ>_ép(a))_
(6)

From Eq.(6), the variation in the interatomic
distance in response to the deformation F (averaged
strain %) can be derived. Moreover, under the condi-
tion that the internal displacement becomes minimum
and the stress is free, the elastic constants can be
defined by Eq.(8).

1 0¢
4 .Qo 0735 ln= 05 o (7)
Cim= Chni+ Cha, (8)
Chr= _2 2 Di’}mg%zDigm, (9)
o 1 5275
ijRL T QO 8772]877kl 720, 6= 0 (10)
1 &
D= 2 ‘armc?éﬁ 7=0,6=0" (11
P :L ik
Euq 0 aé—ﬂaé; 7]=0,E=0’
2 95 B3 = SorOin, (12)

Where ¢ is potential energy, D# is piezo elastic
constants, £%57 is the force constants between sub-
lattices, Qo=det(ho) is volume, and indexes 2, q,
represent the sublattices.
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The first term of the right-hand side of Eq.(8) is
referred to as the local elastic constants (Born term
C¥z:) and the second term is the relaxation elastic
constants (Relaxation term C}.). The former is
defined by ignoring the effect of internal displacement
and corresponds to the stiffness of atomic bonding.
The latter corresponds to the softening effect of inter-
nal displacement.

Since the independent freedom of the force con-
stants tensor E(BNX3N) in Eq.(12) is (3N—3), it
cannot be solved directly. In order to remove these
three dependent freedoms, E must be diagonalized.
From the eigen values A, Az, -, Asv (Aav—2=Asy_1=Asn
=0) and eigen vectors uvi, vz, ***, sy of E, we can
define the A and L:» as shown below,

A0 0 - 0
A 0 0
A= T (13)
/13N—3
Lm:(vl, Uz, ", UsNAa) 5 (LfnLin:I). (14)
Finally g can be obtained from Eq.(15),
g=E'=LuyuA7 L. (15)

The atomistic local elastic constants (C%:) and
relaxation elastic constants (C##) can be defined as a
contribution of each atom, which is the same concept
as that seen in atomic stress. Here we assume that all
atoms have each sublattice (#(@)=a). In Eq.(16), we
define the atomic elastic constants so that their aver-
ages can be equal to the global elastic constants,
which is different from Albers’ definition® since they
used 2 body-like property of EAM potential for the
definition.

Cz.;!kl CO kl+ cz]k!, <N Z Cukl zjkl> (16)

doy Or*
or® o

-Q(fcgl}el—_ngo 2 <N 2 Cukl Cukl)

17
— &2 2 ngmgmnDkln, 2 Cukl C?}kz
N

(18)

Where £ is atomistic volume, which here is set

at Q¢ :.QO/N .
2.3 Application to the Tersoff potential

The covalent bonding of silicon is represented by
four coordination structure as illustrated in Fig. 3.
Here, the atoms £ and 7 are the neighbors of atom .
7% is the distance between atoms @ and 8. 0O is the
angle between the bonding @8 and ay.

Tersoff™ described his three-body potential ¢ as
a two-body form of atoms @ and 8 as shown in Eq.
(19) and included the three-body effect of atoms a, B,
and 7 into ¢* implicitly. The concrete form of
potential is shown in Eq.(19) - (27) :

QO ukl
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Fig. 3 Covalent bonding of silicon

b= Ve C9)
V= fe(r ) a®fa(r®)+ b fa( )] (20)
fe(r)=A exp(— A7) (21)
Fa(r)=—B exp(—A¥) (22)
1, r<R—D
1 .|
folr)= T_SIHB(VMR)/D}’ (23)
R—D<r<R+D
0, r>R+D
b= (1+prgem)1en (24)
§9= 2 Fe(r)g(6“explAs’(r " —» )]
* (25)
() =14+ c*/d*— c?/[d*+(h—cos 6)?] (26)
a®=1 27

fr and fa are the repulsive and attractive poten-
tial, respectively. fc is cutoff function, by which the
bonding is smoothly cut off between the 1st and 2nd
neighbors. The dependences of coordination number
and the three-body effect are incorporated in {%. A,
B, A&, A, 45, R, D, ¢, d, I, n, a, B are potential parame-
ters provided by Tersoff™.

For calculation of the derivatives of potential
with respect to strain, the partial derivative along all
dependent paths is necessary. For example, the stress
can be obtained from the first order derivative of total
energy with respect to the strain, resulting in Egs. (28)
and (29),

0 1 oV
B T D v @D
DV _ V™ gr® | gVl ag™ oy
Oy Or® Opy; | L% | 9r*F anp
ot o, o B 0]
rizs 0™ Ony | %as 0cos 0% 073 ’
(29)

(07*/07:;) can be derived by using Eq.(6) as
shown in Eq.(30), where (#¢): means the 7-th compo-
nent of ré*,

r* _ 1 95 _ (7”0‘1/;)1'( Voaﬁ)j
oy 27% Opy 7 ’
The elastic constants can be obtained using the
same procedures. For example, the local - elastic
constants Cliz: of Eq.(10) can be derived by the second
order derivative of total energy with the strain, as

(30)

JSME International Journal

57

shown in Egs.(31) and (32),

o 1 &p |
gkt £ 37/1737]1@5 7=0,6=0
11 PV |
M.Qo 2 dn aﬁﬁaﬂkzlnzo,ézo (31)
PV _FV o ar IV dre
arzﬁamz ar“‘” 87]1']' ﬁrm or* 377ija77kz
+ PV [oe** or* I* ac
37”“'9(9{,’“”_6‘7’“5 877111 7% a,B aVac 87]12[
9t dcos 07 ar” .
+y=§,,e ocos % Onw | ons
(32)

Only the derivative of the first term of the right-
hand side of Eq.(29) is shown here and the detailed
formulation is shown in Appendix.

3. Application to Crystalline Silicon

The elastic constants of crystalline silicon are
investigated using Martin’s method. Since Martin’s
method is defined for static structures, an increase in
error is expected as the temperature is increased,
especially in the range of anharmonic vibration. In
order to evaluate the effect of thermal fluctuation,
both low and high temperature calculations are con-
ducted.

3.1 Analysis conditions

The analysis conditions of crystalline silicon are
shown in Table 1. For low temperature analysis, 7=
300 K is selected since it is low enough in comparison
to the Debye temperature (640 K). For high tempera-
ture, 7=1 477 K, which amounts to about 909 of the
melting temperature of the Tersoff potential, is
selected. The number of atom is 216. Since the
system is homogeneous, that size is enough large to
obtain the elastic constants.

For the accurate expression of high temperature
properties, we modified the cutoff function shown in
Eq.(23). "The second derivative of Tersoff’s cutoff
function with respect to distance # is shown as the
dotted line in Fig.4. It is found that the function is
discontinuous. Such a discontinuous function causes
the nonphysical discontinuity of energy at high tem-
peratures, where the second nearest atoms frequently
invade the cutoff region owing to the large fluctuation.

The damping cutoff function ‘tanh’ is newly
introduced as Eq.(33) so that these discontinuities can
be improved. In addition, for the most effective incor-
poration of the effect of nearest neighbor atoms, the
cutoff distance R is changed from 2.85A to 3.0A. The
other cutoff parameter D is not optimized. The
second order derivative of the modified cutoff function
is shown as the solid line in Fig. 4. For comparison, R
is set at 2.85. With the disappearance of the disconti-
nuity, the function becomes continuous.
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Table 1 Analysis condition of crystalline silicon

modified Tersoff

x[100], y[010], z[001]

Verlet method A ¢=5 fs
T=300 K, 1477 K

N=6 x 6 x 6=216

Micro canonical (zero stress)

Potential

Crystal orientation
Difference equation
Temperature
Number of atoms

Ensemble

L5

Pfe(r)
dar?

1 Modified Tersoff —
‘ Original Tersoff —

Second order derivative

26 27 28 2 3 3.1

9,
distance r [1&]

Fig. 4 Second orderderivative of original and modified
cutoff function fe

ﬁ(r)z%—% tanh[g(r —R)/D} (33)

As an example of modification, the temperature
dependences of Cu and Ciz after and before
modification are shown in Figs. 5 and 6, respectively.
Experimental results are also shown for comparison.

As for the model before modification, the elastic
constants increase unphysically at high temperatures
in contrast to the experimental tendency. However,
these tendencies have been improved by our
modification of the potential. That is, the anharmonic
effects can be expressed accurately. While the values
of the quantities deviate about 159% from the experi-
mental values, they are the intrinsic properties of the
Tersoff potential. According to Tersoff, further
fitting is impossible while maintaining the other physi-
cal properties such as surface energy®.

Here we used the fluctuation formula, explained
later, for the calculation of elastic constants in order
to obtain the accurate values at high temperature.

3.2 Results

Since two overlapped fcc lattices are included in
the crystalline silicon, only the relative displacement
between two sublattices needs to be taken into
account. This makes the problem very simple. Thus,
the Dy tensor of Eq.(11) and the E;; tensor of Eq.(12)
can be written as

Diy(i=1-3,j=1-6)=

’

o O O
o O O
o O O
o o Q
o8 o
Qoo

(34)
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and
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0 0 e

For the notation of Dy, Voight notation is used®
in Eq.(34). The relaxation elastic constants can be
calculated using the following equation :

Cii=Cé=Cé=—d"/e, (36)
where 10 000 steps averaging is performed. For exam-
ple, we obtained d=5.2X10* [GPa/nm] and ¢=5.7x
10° [GPa/nm?] at 300 K. Elastic constants at 300 K
and 1 477 K are shown in Tables 2 and 3, respectively.

Due to the effect of internal displacement (i,
relaxation elastic constants), Cu decreases. This
result coincides with the fact that internal displace-
ment appears and contributes to the elastic properties
if the shear stress is applied to the crystalline silicon
with [100] - [010] orientation®.

4. Discussion

The validity and efficacy of the elastic constants
are evaluated by comparison with the results of statis-
tical thermodynamics method (Fluctuation Formula)
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Table 2 Elastic constants using the Martin’s method (300

K)

Relax. Born | Total[GPa]
C11 0.0 139.1 139.1
Ci2 0.0 74.4 744
Cyq | 476 1143 66.7

Table 3 Elastic constants using the Martin’s method

(1477K)

Relax. Born | Total[GPa)
Ch1 0.0 127.0 127.0
Ci2 0.0 70.3 70.3
Cya | -43.4 1003 56.9

proposed by Ray. In addition, through the comparison
of two methods, the physical meaning of the fluctua-
tion formula is clarified, which has not been previously
achieved.
4.1 The verification of the values of elastic con-
stants

For verification of Martin’s method, the results
are compared with those obtained by using the fluctua-
tion formula in the micro canonical ensemble
proposed by Ray. Since molecular dynamics realizes
the statistical ensemble, it is clear that accurate
values can be obtained by using the concept of statisti-
cal phase space. ‘

According to Ray, the elastic constants can be
represented by Eq.(37). The first term of the right-
hand side is referred as the fluctuation term. The
second term is the second order derivative of
Hamiltonian H with respect to the strain,

Vool hiosa hioir hots Cogrs= — 48 (MyMs) [z T

*H
+4 < 0G50G >

Where /%o; and Vo are the lattice matrix and
volume in the standard state (stress-free), respective-
ly. hy and V are those of the deformed (present)
state and V=det(h). Gs="hwhs and 6 means fluctua-
tion (8(AB)=<(AB>—(A>B>,<.> means ensemble
average). My=0H/3Gi; and T is temperature. The
partial derivatives of potential with G can be
obtained by using Eq.(3). <..> represents ensemble
average, and oy is Cauchy stress.

Substituting the Hamiltonian of Eq.(38) into the
second term of Eq.(40), Eq.(39) is obtained, where #z,
is the mass of atom &, v. is the velocity of atom 4, and
N is total number of atoms:

A_N 1 2
H_‘§77W¢zva +¢,

(37

(38)
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Table 4 Elastic constants using the fluctuation formula
(300 K) [GPa]

Fluct. Kin. Born Total Exp.[11]
(o 11 08 1391 | 1388 (167.4)
Cr2 0.2 0.0 744 74.2 (65.2)
Caq | -47.4£13.8 04 1143 | 67.3+13.8 (79.6)

Table 5 Elastic constants using the fluctuation formula
(1477K) [GPa]

Fluct. Kin. Born Total Exp.[11]
Cn 80 38 1270 | 1228 | (148.0)
Cha 2.2 0.0 703 68.1 (57.5)
Cus | -43.1£1.0 2.0 100.3 | 59.241.0 (70.0)
*H _1 —1-1 —1-1
<aGijaGkn >_ 2 NkBT(Gm Jk + le Gjn
At
+ ) (39)

The first term of right-hand side of Eq.(39) is
referred to as the kinetic term, which is the derivative
of kinetic energy with strain. The second term is
referred to as the Born term, which is the derivative
of potential energy with strain. The form of the Born
term is the same as the local elastic constants of
Martin’s method.

In the case of zero stress, the definition can be
written in simple form as shown by Eq.(40),

Cijni=— k};/% 8(0i0m) + ZN%T (818 + 0:nbir)

1 Fo
+T/0—< aﬁijaﬂkz > (40)

Elastic constants at 300 K and 1477 K are shown
in Tables 4 and 5, respectively. The experimental
values are also shown for comparison®®. As ex-
plained in the previous section, an intrinsic error
appears between the experiment and the Tersoff
potential. ‘

At 300 K, since the deviation of Martin’s method
is less than 194, the validity of Martin’s method at low
temperature is proven. In addition, it is found that the
relaxation elastic constant Cu closely correlate with
the fluctuation term. Ray speculated that the effect of
internal displacement was included in the fluctuation
term. Our results have proved the validity of his idea
quantitatively. Inversely, the fluctuation formula can
estimate the effect of internal displacement without
considering its physical meaning.

At 1477K, though the deviation increases as
compared with that of 300 K and reaches about 5%,
closely similar values were still obtained.

The deviations of Cu and Ciz are induced
(originated) mostly by the fluctuation term. That is
thought to be due to the effect of thermal fluctuation.
Thus, although Martin’s method cannot deal with the
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Fig. 8 The convergence curve of the fluctuation term
(1477 K) ‘

thermal fluctuation, the fluctuation formula can pre-
dict both internal displacement and thermal fluctua-
tion effect indirectly.
4.2 The evaluation of convergence

In order to show the efficacy of Martin’s method,
the convergence curves of the fluctuation term of Cus,
‘Css, and Ces are shown in Fig. 7. The convergence is
very slow and much scattering remains after several
hundred thousands averaging steps.  Therefore,
600 000 steps and three-component averaging are
necessary in order to reduce the measurement error.
The = scatterings shown in Table 4 are the standard
deviations of three components averaged by 600 000
steps. On the other hand, the convergence curve of the
relaxation elastic constants is also shown in Fig. 7.
The curve converges through several thousand stéps
and appears straight due to small variation. Thus, the
convergence is significantly fast as compared with
that of the fluctuation formula. Since the accurate
values can be obtained effectively, it is found that
Martin’s method is greatly effective for the calcula-
tion of elastic constants at low temperature.

Following the same procedure, the convergence
curves of the fluctuation term at 1477 K are shown in
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Fig.8. The curves arrived at using Martin’s method
becomes straight line as well at 300 K, similar to that
shown in Fig.7. It is found that the convergence is
improved as compared with that of low temperature.
Since the fluctuation is relatively small at low temper-
atures, the second-order moment with respect to
stress fluctuation 6(MyMrs) becomes difficult to
obtain®?, At high temperatures, since the accuracy of
Martin’s method decreases and the convergence of the
fluctuation formula increases, the statistical ther-
modynamics method shows a relative increase in
efficacy.

5. Conclusions

Martin’s method, which is used to obtain the
internal displacement of atomic systems and elastic
constants, is applied to the Tersoff potential. The
elastic constants of crystalline silicon were investigat-
ed at both low and high temperatures. The results
were verified using -the statistical thermodynamic
method, i.e., the ‘Fluctuation formula’.

(1) Martin’s method is very effective at low tem-
peratures, since it provides accurate values and good
convergence. At high temperatures, while the thermal
fluctuation causes an error of several %, it is nonethe-
less an effective method.

(2) It is clarified that the fluctuation term of the
fluctuation formula includes the effects of internal
displacement and thermal fluctuation.

(3) Since the convergence of fluctuation formula
increases as the temperature is increased, it is
effective at high temperature.

In this paper, we applied Martin’s method to
crystalline silicon, which includes only two sub-
lattices. However, the significant advantage of
Martin’s method is its applicability to arbitrary crys-
tal structures. We will further develop our research in
this area by focusing next on thin silicon films.

Appendix

Detailed formation of the second-order derivative
of V* with the strain is shown in Eq.(41). Other
derivative forms are available at our web site®?.

32 Vaﬂ _ aZ Vaﬂ or ap or aB ‘ 0 Va'ﬁ 827,4/1
0750781 o °F 07 0w L or® 0745071
aZ Vaﬂ B aézaﬁ ayaﬁ aélﬂﬁ ‘87/4'7

T e P PR P
AE*  dcos 87 | or**
rEa8 d cos G 0Nr: J 37717
) aZle? B agaﬁ ar(lﬂ aé’dﬁ 87/47
TOCTFIrF L ar® ony | ALas or™ Ony
oL dcos 8% | or*
+7=§,ﬁ 0 cog 9“57 aﬂij ] aﬂkz
L PV ar 3L ore
6‘5“”2 I_araﬁ 377kl yiap 0% (977;:1
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