Study of a Combined FEM-MD Method for Silicon*

Satoshi [ZUMI*! Takashi KAWAKAMI*? and Shinsuke SAKAT*!

A new method combining the finite element method (FEM) and the molecular dynamics
(MD) for the complicated diamond-like structure of silicon is proposed. For simultaneous

simulation, the patch model was used to exchange displacement information in both directions.

A one-to-one correspondence of atoms and nodes is impossible for a silicon lattice, therefore, the

atom was embedded in an isoparametric element. The influence of internal displacement which is

a additional displacement to the continuum one, was taken into consideration. Martin’s method

was applied to calculate the internal displacement and elastic constants. The conjugate gradient
method was used for MD, the Newton-Raphson method was used for FEM to efficiently find the
stable state, and the acceleration condition was set to raise convergence. The verification model
showed that the smooth transition of displacement and stress was realized in the boundary region
of FEM and MD. These values showed good agreement with the elastic solution.
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1. Introduction

In recent years, the atomic level evaluation of
materials has attracted considerable attention, and
many approaches have been attempted. The
molecular-orbital method and the first principle
molecular-dynamics method, which calculate poten-
tials semi- or non-empirically, have been used for the
design of new materials and the mechanism elucida-
tion of phenomena which cannot be evaluated by ex-
perimental approaches. However, their deficiency is
that they can treat only several tens of atoms. Since
molecular dynamics (MD) approximates potentials
with empirical functions, the accuracy becomes lower
than the first principle calculation. However, calcu-
lation of significantly large systems becomes possi-
ble. Recently, calculation of no less than 100,000,000
atoms was performed(l). However, it is still impos-

sible to deal with real system size, and thus for the
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application of MD to real systems, it may be effec-
tive to simulate only the important regions by MD
and the other regions by the continuum method, such
as finite element method (FEM). In this paper, we
focus on the mechanical combination of FEM and
MD. In particular, an effective method for compli-
cated lattice structures (non-Brave lattice) such as
silicon, which is an important material for semicon-
ductor devices, is proposed.

Various combination methods have been already
proposed. Mullins? proposed a method using
”force”. In the FEM-MD boundary, the atoms were
embedded into FEM elements, and atomic force
was converted to the concentrated load of FEM.
However, since the atomic force was long-range and
had non-local property, it could not maintain the
balance of the force in the boundary, and non-
physical and discontinuous stress distribution was
introduced. Moreover, it is doubtful whether the
strong-directive atomic force of the covalent bond
can be converted to the concentrated load. By the
use of displacement instead of force, the problem
of non-local property and bond directivity can be
avoided. Therefore the displacement-constrained

method which provides the boundary atoms with the



elastic solution has been applied(?’). However, since
the action in the atomic region cannot be transmitted
to FEM region by using this method, simultaneous
combination of FEM and MD is impossible. In
this paper, in order to solve this problem the
patch model first proposed by Kohlhoff et al.® was
applied. FEM-MD combination for homogeneous
lattice structures, such as the FCC and BCC, has
already been investigated. However, for complicated
lattice structures such as diamond-like, amorphous
types, etc., there are some typical problems. Firstly
internal displacement which is the difference between
the atomic and continuum displacement prevents the
consistency of the displacement between FEM and
MD®. Secondly, a one-to-one correspondence of
atoms and nodes as Kohlhoff et al. achieved(4),
is impossible for complicated lattices. Because of
these difficulties, the FEM-MD combination method
for diamond-like structures and others has not been
proposed until now. In this paper, a FEM-MD
combination method which can solve these problems
is proposed.  Thus, in order to establish the
method for determining the internal displacement
and it’s effect on elastic constants, Martin’s

©) was newly applied to MD. Atoms

formulation
are embedded into FEM isoparametric elements in
the normalized coordinate system (£,7,¢{). The
FEM-MD combination method for the complicated
lattice which contains internal displacement is
realized. Moreover, in the convergence calculation
for finding a stable state, an excellent accurate
and efficient technique is proposed. In this paper,
only the static analysis was carried out for the
purpose of mechanical (stress) combination. The
treatment of heat vibration needs to be investigated
The details of the

proposed FEM-MD combination method are shown

independently (separately).

in Chapter 2. The model used for the verification
of the proposed method and the concrete analysis
technique are shown in Chapter 3, and the result
is shown in Chapter 4. In Chapter 5, the effects of
internal displacement and convergence of the method

are discussed.

2. Proposed method

The FEM-MD combination method for compli-
cated lattice structures such as diamond structure
which contain the internal displacement is described.

21 Correspondence of nodes and atoms
In the overlap region of FEM and MD, nodes and
atoms need to correspond to one another. One-
to-one correspondence is difficult due to structural
problems in the case of diamond-like or amorphous
structures. It is considered that non-physical
distortion is generated if nodes exist at the point
where atoms do not exist. For example, in the case
of silicon, 8 atoms in a unit cell are embedded into an
isoparametric element in the normalized coordinate
system (£, 7, ¢ coordinates), as shown in Fig.1. In the
case of transferring displacement from FEM to MD,
the interpolation is conducted by the use of shape
function for atoms which are not correspondent with
nodes. In the opposite case, the displacement of
nodes is equal to that of corresponding atoms. The
extrapolation from neighboring atoms is required if
the node exists in the non-existing point of atoms.
However, it is desirable for the node to correspond
to atoms, if possible, from the viewpoint of the
calculation accuracy.

The patch method® which realizes simultaneous
simulation by exchanging only the displacements
of FEM and MD through the transition region, is
employed. In this method, the whole system consists
of four regions. Regions 2 and 3 are transition regions
(Fig.2). MD regions are from 1 to 3, and FEM
regions are from 2 to 4. The displacement of atoms in
region 2 supplies the boundary conditions for FEM,
and conversely the displacement field of elements in
region 3 supplies those for MD. It is necessary that
region 3 is larger than the cutoff distance of the
atomic force to eliminate the surface effect. Region
2 may be a row of atoms because it is the boundary
of FEM. By exchanging the displacement in both
directions iteratively, the stable system is realized
with continuous stress and displacement distribution
through the boundary of FEM and MD.

2-2 Consideration of internal displacement
effect It is necessary to take the internal
displacement effect into consideration in the case

of lattice structures where atomic displacement is



Fig. 1 The relationship between Si atoms and
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Fig. 2 The patch model®

nonlinear to the deformation (for example, silicon
and amorphous structures). According to Martin’s
formulation, the internal displacement vector &7 is
the product of the inverse of the force constants
tensor g and the third-rank tensor D related to the
piezo-effect, as shown in Eq.(1). Therefore atomic
displacement is the sum of the elastic displacement
and internal displacement. Here ¢ indicates the

potential energy of a system and €2 is the volume.
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When the displacement of FEM transforms to
MD atoms, it is necessary to add an internal
displacement, and to subtract one in the opposite
case. The strain value required to obtain the internal
displacement vector £ is derived from the product
of the atomic stress and compliance matrix as for
MD. The averaged node strain is used as for FEM.
Although the atomic stress of MD has non-local
property, it seems that the effect can be ignored by
setting the boundary region of FEM-MD in small

strain-gradient region. In such a case, it is expected

that the atomic stress is almost the same as the
P

continuum stress. Atomic stress o] ,; Was defined by
formula(4), where r?? expresses the distance between
atom p and g and QP is the volume per one atom. It
was defined so that the average value of the atomic
stress was equal to the stress of the whole system.
In order to examine the validity of the definition,
the atomic stress distribution was calculated for the
model where the displacement of all atoms was fixed
by the result of FEM analysis of the whole system
as shown in 3-1, and then compared with the stress
of FEM. The deviations of atomic stress from FEM
stress were 0.08 % for o, and 0.22 % for ogy. It
was found that both stresses were coincident within

remarkable accuracy limits.
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Since the deviation of MD and FEM elastic
constants introduces nonphysical strain in the
boundary region, the elastic constants of MD region
were calculated separately(5), and provided for FEM
region.

2-:3 Method for convergence Kohlhoff et
al. used the Newton-Raphson method for the
convergence calculation to find the stable state of
FEM-MD system®.

method is not suitable for MD calculation with

However, Newton-Raphson

many-body potential such as silicon, because of
the difficulty of the Hessian calculation, thus, the
conjugate gradient method without the Hessian
calculation is more suitable. Therefore, for MD
calculation, the conjugate gradient method was
adopted. FEM calculation was able to use the
Newton-Raphson method in the form including the
interaction with MD calculation. In order to combine
the two different analyses, the following iteration was
applied.
1. Set the initial displacement of MD and the
boundary condition of FEM
2. Obtain the atomic strain from the atomic
stress in region 2, then calculate the internal
displacement.
3. Fix the nodal displacement of region 2 by using
the MD result and compute the reaction force
vector of FEM (f, ;). Note that the fixed nodal



displacement is obtained to subtract the internal
displacement from the atomic displacement

4. Compute the stable state of FEM regions 3 and
4 and obtain the displacement of all nodes

5. Obtain the internal displacement from the
nodal strain in region 3

6. Fix the atomic displacement of region 3
by using the FEM result and compute the
stable state of MD regions 1 and 2 by the
conjugate gradient method, and obtain the
atomic displacement of all atoms. Note that
the fixed atomic displacement is the sum of the
nodal and internal displacement.

7. Check the convergence. If failed, return to
procedure 2.

The displacement of the i-th iteration can be
derived as in Eq.(5).

a; = a;_1+ aiAai (5)
Aa; = —-K &, (6)
® _, = Kai1—f; (a;_1,MD) (7)

Here, K is the global stiffness matrix, and ® is the
residual force vector. f; ;(a;_1, M D) expresses that
f;_4 is introduced by the result of MD calculation
with the boundary condition obtained from the
former FEM result. Later, it simply abbreviates to
fi_1. From the definition of the Newton-Raphson

method, K’ is written as follows

0P K of; 4

K = - 8
Oda;—1 da;_1 ( )
Since gé:: cannot be solved analytically and

inverse matrix must be calculated for each step of the
change in K’, here K'' = K ' is approximately
assumed.

Additionally, using Eq.(5) and Eq.(6), Eq.(7) is

rewritten in the simple form as Eq.(9).

®,_ 1 = K-(a;-2t+a;10a;_1)—f; 1
= ® o+ f; 50— 1P 20— f; 4
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Since «; is set to unity in the case of the normal

Newton-Raphson method, the accelerated technique

is adopted in order to raise the convergence. The

potential energy of FEM system is differentiated with

respect to a; in order to obtain the «; to reduce the

potential energy as much as possible.

on(a;) On(a;) Oa;

doy - da; ' doy

Using Eq.(5) and n(a;) = i1a!Ka; — fra;, it
follows that

(10)
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Since gé: cannot be calculated analytically as with

Eq.(8), it is assumed to be zero. The potential energy
will become minimum with respect to «;, which leads
to I' = 0. For efficiency, the approximate value
of ; is obtained by the linear interpolation of two
calculation results for a; = 0 and a; = 1. For
o;=0, using a;=a; 1, I' = ®;_1Aa; is obtained. As
for a;=1, using Eq.(9) T = ®] - Aa; = (f;_, —
i) - A.a; is obtained. ®], f; are the residual and
force vectors respectively for calculating a; as o; = 1.
Moreover, for the stability of the calculation, the
maximum value of « is set at 4.0.

Here, it is considered that convergence will
increase through initial displacement in MD region.
For example, it will be effective that initial
displacement is set to be the same as the result of

FEM calculation for the whole region.

3. Analysis condition

To verify our method, crystal silicon which was
fully investigated in a former report(5) was used as
the analysis subject. Crystal silicon has a diamond-
like structure and internal displacement occurs due
to the shear deformation. Therefore, the shear-strain
dominant field was set. The analysis condition and
FEM and MD technique are shown in detail.

31 Analysis model The analysis model
(meshes and atoms) is shown in Fig.3. The division
of regions 1-4 is shown in the lower part. The
outermost size of region 3, region 2 and region 1 is
8x8, 6x6 and 4x4(unit cell), respectively. For the
correspondence of the atoms and nodes in region 2
and 3, a unit basic lattice is set up with 1 mesh (1
mesh per eight atoms), as shown in Fig. 1. For

simplicity, the thickness of the z-direction was set



one mesh layer and all the z-displacements were fixed
(plain strain condition). To eliminate the surface
effect of MD region, a periodic boundary condition
was adopted in the z-direction. To introduce the
shear-strain dominant field, uniform displacement
was enforced on the right-side nodes, %,=0.01[4],
7,=0.1[4], and the left-side nodes were fixed. The
number of atoms was 133 (region 1
2) and 280 (region 3). The number
32 (region 2, corresponding to the inn
row), 280 (region 3) and 920 (region 4
s 560.
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region

The significant advantage of this proposed method
is that the information transmits to FEM region from
MD region, which includes unpredictable phenomena
from the use of FEM, and that those transmission
realize the mechanical stable state of the whole
system. However, this paper deals with the problem
that the solution was obtained by only the FEM
for the purpose of highly accurate verification of
the FEM-MD combination method. Additionally,
all displacements of MD region were set to zero so
that there might be no correlation of displacement
between MD and FEM regions in the initial state.

Since the initial displacement is very different from
an elastic solution, and the stable state needs to
be found by exchanging displacement information
between FEM-MD iteratively, it is considered that
verification of our proposed method is possible.

32 Molecular-dynamics method The
Tersoff potential(s) was used for MD calculation of
silicon. Refer to the reference!® in details, as for
the calculation of the atomic force, stress, elastic
constants, and internal displacement.

The conjugate gradient method was used for the
optimization of structure. Generally, for the highly
accurate many-body potential (for example, Tersofl
potential, etc.), the calculation of the Hessian is
difficult. Therefore, § in the straight-line search
formula (12) required in order to obtain atomic
position x, was calculated by the use of the 2-
divided method so that the condition of Armijo was
fulfilled®. d is the search direction.

The condition of Armijo means that ( which
satisfies ¢(zx + Bdi) < ¢(ax) + vBV(xy) dy is
selected as By, where v is a constant which satisfies
0< v <1, and is independent of k (step number
of conjugate gradient method). At first, a suitable
v was set, then § was reduced to half from unity
until it fulfilled the condition of Armijo. ¢ indicates

potential.

Tpi1 = Tk + Prdi (12)

The Fletcher-Reeves formulation shown in Eq.(14)
was used in order to obtain 7 in Eq.(13), which is

required to find search direction d.

diy1 = —Vo(xpr1) + vedi (13)
IV(ri)]?

_ I 14
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As soon as the rate of energy variation became less
than 1.0x10~'#, or the number of trials reached 60,
the trial was closed. This condition was determined
by trial and error so that full convergence could be
realized.

The FEM

program for 3D elastic analysis based on the

3-3 Finite element method

infinitesimal deformation theory was newly prepared.

To avoid the higher-order interpolation of strain



in the non-existing region of atoms, the higher-
order element was not used, but the isoparametric
hexahedral element which contained 8-nodes was
used. The 2nd order integration (8 integration
points) was adopted. For iterative calculation,
the LU decomposition by the correction Cholesky
method was conducted in order to calculate the
inverse matrix\*?). Since nodes were fitted to atoms,
averaged node strain and stress were required. They
were obtained by extrapolating strain and stress
at integration points into the nodes by the use of
shape function and taking the average about all those

elements to which those nodes belonged.

4. Results

After 30 iterations of the procedures 2.~7. in
2.3, the norm of the residual vector ||®| had
become less than 1.0x10~* times the initial norm
||®o]|. Displacement distribution along a plot line
(see Fig.3) is shown in Fig.4 and stress distribution
Oz - Ozy ( atomic stress in MD region, averaged
node stress in FEM region ) is shown in Fig.5 and
Fig.6, respectively. Here, the stress of the surface
region was eliminated from the plot, because of the
surface influence. Moreover, the value (henceforth
elastic solution) calculated by FEM analysis for
the whole region, was also shown for verification.
Smooth transition of displacement was realized at
the boundary (region 3) identified as the hatched
area, and almost the same value as the elastic
solution was obtained in all regions.

The mean error of U; - U, compared with the
elastic solution was 0.18 % in MD region. In the
case of stress, a small disorder at the boundary was
generated, but transition was smooth, and almost
the same value as the elastic solution was obtained.
The mean error of 0y - 04y was 0.4 %. Therefore,
it could be proved that the FEM-MD combination
method was appropriate. As for the disorder of shear
stress distribution at the boundary, it is considered
that the errors were caused by some disagreement
of the model, for example the application of the
infinitesimal deformation model, or the difference
in definition between atomic stress and continuum
stress, etc. Further examination is required, for

example, the application of a finite deformation

model.
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5. Discussion

51 The effect of internal displacement
In order to consider the validity of the proposed
FEM-MD combination method in which the effect of
internal displacement was taken into consideration, a
calculation which ignored that effect was conducted.
Stress distribution (0y,) along a plot line in Fig.3 is
shown in Fig.7 as a result. It should be noted that
stress distribution was remarkably disordered near
the boundary in comparison with that in Fig.6. This
was considered to be due to the neglect of the internal
displacement effect. = However, the value inside
MD region was almost coincident with the elastic
solution. Inconsistency of the model was thought to
be concentrated on the boundary region, since the
Tersoff potential was a short-range potential only
considering the first neighbor force. In any case, the
disordered stress distribution in the boundary region
is a severe problem, therefore the consideration of the

internal displacement was necessary.
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Fig. 7 Same as Fig.6 but the effect of internal

displacement was ignored

5.2 Convergence

521 The effect of the accelerated
condition In order to consider the effect of the
proposed accelerated condition of Newton-Raphson,
comparison with a normal Newton-Raphson ( a =1
) was conducted. The histories of the norm of the
residual force normalized by initial value are shown
in Fig.8. It should be noted that the convergence of
the proposed accelerated method was about 2 times
faster, therefore effectivity was proved. The errors
after 30 iterations of the normal Newton-Raphson

method became 2.2 % for o, - 0y, and 1.2 % for

U -Uy. It was found that convergence was slow and
the correct result could not be obtained.

5-2.2 The influence of MD maximum trial
The number of trials (60 steps) of

MD calculation was chosen from the condition

number

which realized full convergence. For the calculation
efficiency, reduction in the number of trials is
effective as well as iteration. The histories of the
norm of the residual force in the cases where the
number of maximum trials was set at 10, 30, and
60 steps are shown in Fig.9 (failed to converge in
the case of 5 steps). The errors of displacement
were 0.5 % and 0.03 %, in the case of 10 and 30
steps, respectively, and those of stress were 0.6 % and
0.4 %. Complete convergence was obtained for 30
steps, but not 10 steps. However, the reduction in
the number of trials made the convergence tendency
unstable. It appeared that there was a correlation
between instablility and «. Although, in the case
of 60 steps, a was stable and between 1 and 2, and
not exceeding 4. In the case of 10 and 30 steps,
a frequently exceeded 4. Since accurate estimation
of a was impossible due to poor convergence of
MD calculation, that inaccurate estimation made
the convergence of combination unstable. It is
necessary to estimate the optimum number of trials
for calculation efficiency.

5-2-3 Application of the conjugate gradient
method
method which also adopted the conjugate gradient
method for FEM as in Gumbsch et al. (11),
were performed. The PCG method which

contains imperfect Cholesky decomposition for the

Comparisons with the combination

pretreatment of the conjugate gradient method was
used'®.  For the simultaneous calculation, when
the residual force vector was calculated for every
FEM conjugate gradient step, the force vector was
updated by using the result of MD calculation as in
procedure 3. in 2-3. As soon as MD steps reached
10, or the energy variation rate became 1.0x10~1%
or less, MD calculation was closed. Since an increase
in MD steps, for example 30 steps, could make the
calculation more stable, the calculation amount also
increased. The smallest possible number of steps
which did not lose the convergence was adopted

practically (failed to converge in the case of 5 steps).



The history of the normalized norm of the residual
vector is shown in Fig.10. The result where the
maximum MD step in 5-2-2 was set to 10 steps
is also shown. The errors of displacement U, - Uy
and o, - 04y were 0.1 % and 0.43 %, respectively,
after 200 iterations. Therefore, it can be said that
the convergence was realized. Since the convergence
of the conjugate gradient method was slow, about
6 times the number of iterations were required in
comparison with the accelerated Newton-Raphson
method. The ratio of FEM calculation to all the
calculations was small since the applied model size
was so small. Therefore, it was found that the
accelerated Newton-Raphson method which needed
less MD steps was the more efficient method.

In the case of a large system, if the ratio of
MD calculation is larger, the accelerated Newton-
Raphson is still effective since it needs fewer
iterations. Conversely, if the ratio of FEM becomes
larger, the speed-up by the sparse-matrix method or
the excellent pretreatment of the conjugate gradient
method introduces a variation in the ratio of FEM

and MD. A separate general discussion on this is

necessary.
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Fig. 8 The convergence of the accelerated Newton-

Raphson method

6. Conclusion

A new method combining the finite element
method and the molecular dynamics method was
proposed, for dealing with complicated lattice
structures such as the diamond-like structure of

silicon.

(1) Embedding of atoms into isoparametric

elements and the incorporation of the internal
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Fig. 9 The influence of the number of MD steps on

convergence
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Fig. 10 Convergent difference between the acceler-
ated Newton-Raphson method and the con-
jugate gradient method

displacement effect realized the combination.
(2) The conjugate gradient method which was
suitable for MD property was adopted for MD
calculation, and the Newton-Raphson method
was adopted for FEM calculation. Then, the
accelerated technique for the Newton-Raphson
method was proposed in order to realize the
high accuracy and convergence of FEM-MD

combination simultaneous calculation.

By this proposed method, the smooth transition
of displacement and stress was realized at FEM-
MD boundary, moreover those quantitative values
coincided with the theoretical ones. Therefore, the
validity of the proposed method was confirmed.

The iterative calculation between FEM and MD
was adopted in order to realize the consistency
of the solution in the proposed method. In the

case of treating heat vibration, it is necessary to



perform iterative calculation of FEM-MD for every
MD step, however, it is considered to be unrealistic
due to the large amount of calculation required.
The approximation-technique might be possible,
which satisfies the averaged balance by providing
temperature with the MD region using scaling-
method etc. and conducting iterative calculations
for every particular time step. However, it might
not be a rigorous FEM-MD combination. Further
examination is required in order to treat heat

vibration more rigorously.
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